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ABSTRACT

Generative Representations for Evolutionary Design Automation
A dissertation presented to the Faculty of

the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by Gregory S. Hornby

In this thesis the class of generative representations is de�ned and it is shown that this

class of representations improves the scalability of evolutionary design systems by automat-

ically learning inductive bias of the design problem thereby capturing design dependencies

and better enabling search of large design spaces. First, properties of representations are

identi�ed as: combination, control-�ow, and abstraction. Using these properties, representa-

tions are classi�ed as non-generative, or generative. Whereas non-generative representations

use elements of encoded artifacts at most once in translation from encoding to actual ar-

tifact, generative representations have the ability to reuse parts of the data structure for

encoding artifacts through control-�ow (using iteration) and/or abstraction (using labeled

procedures). Unlike non-generative representations, which do not scale with design com-

plexity because they cannot capture design dependencies in their structure, it is argued that

evolution with generative representations can better scale with design complexity because

of their ability to hierarchically create assemblies of modules for reuse, thereby enabling

better search of large design spaces. Second, GENRE, an evolutionary design system us-

ing a generative representation, is described. Using this system, a non-generative and a

generative representation are compared on four classes of designs: three-dimensional static

structures constructed from voxels; neural networks; actuated robots controlled by oscilla-

tor networks; and neural network controlled robots. Results from evolving designs in these

substrates show that the evolutionary design system is capable of �nding solutions of higher

�tness with the generative representation than with the non-generative representation. This

improved performance is shown to be a result of the generative representation's ability to

ix



capture intrinsic properties of the search space and its ability to reuse parts of the encod-

ing in constructing designs. By capturing design dependencies in its structure, variation

operators are more likely to be successful with a generative representation than with a non-

generative representation. Second, reuse of data elements in encoded designs improves the

ability of an evolutionary algorithm to search large design spaces.
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Chapter 1

Introduction

Evolutionary algorithms are a family of population-based search algorithms that have been

used as systems for the design of antennas [85], �ywheels, load cells [105], trusses [93], sim-

ulated robots [124], and other structures [5]. While they have been successful at producing

simple, albeit novel artifacts, a concern with these systems is how well their search ability

will scale to the larger design spaces associated with more complex artifacts [32] [103]. In

engineering and software development, complex artifacts are achieved by exploiting the prin-

ciples of regularity, modularity, hierarchy and reuse [129] [64] [92]. These features can be

summarized as the hierarchical reuse of organizational units. In this dissertation generative

representations are de�ned as the class of representations which allow reuse of encoded data

elements, and it is shown that they improve the scalability of evolutionary design systems

by capturing useful bias of the design problem and better enabling search of large design

spaces.

The rest of this chapter is organized as follows. First, section 1.1 introduces evolutionary

algorithms. Next, in section 1.2 the reason for focusing on representations as the means to

improve the scalability of automated design systems is discussed, and generative, and other

types of design representations, are de�ned. In section 1.3 it is argued that non-generative

representations will not scale to complex artifacts, and this is followed by arguments for the

improved scalability of generative representations, section 1.4. The �nal two sections list
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the contributions of this dissertation, section 1.5, and an outline of the following chapters,

section 1.6.

1.1 Evolutionary Algorithms

An evolutionary design system uses an evolutionary algorithm (EA) to search a design space.

EAs are a family of population-based, stochastic search and optimization techniques inspired

by natural evolution, which include genetic algorithms [55], evolutionary strategies [11],

genetic programming [81] and evolutionary programming [39]. An EA operates by repeatedly

processing a population of candidate solutions, called individuals, or strings. Search begins

by creating an initial population of individuals, then iteratively selecting good individuals

to reproduce, creating and evaluating new individuals, and inserting the new individuals

into the population �gure 1.1. A single cycle of selection-variation-evaluation-replacement

is called a generation. The rest of this section describes each of these phases.

Initialize the population
Evaluate all members of the population
while not done {

Select individual(s) in the population to be parent(s)
Create new individuals by applying the variation operators to the parents
Evaluate the new individuals
Replace some/all of the individuals in the population with the new
individuals

}

Figure 1.1: The canonical evolutionary algorithm.

Before evolution begins, an initial population of individuals is created randomly. Random

solutions to the problem are created by assigning random values to each data element of an

individual, called a gene. These values are an individual's genotype and the solution it maps

to is the individual's phenotype. Using the binary representation for encoding numbers as

an example, 010110 is the individual's genotype for which the value 22 is the individual's

phenotype.
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The evaluation of candidate solutions is common to all computer-based search algo-

rithms, and is created speci�cally for each problem. In the EA community this evaluation

function is called the �tness function and, in conjunction with the selection method, controls

the number of o�spring created by an individual. Using the �tness scores assigned by the

�tness function, the selection phases chooses some subset of the current population as par-

ents to create new individuals. By biasing selection toward individuals with better �tness,

the created o�spring are more likely to have higher �tness. Depending on how individuals

are chosen, the population will quickly focus on promising individuals and converge quickly,

or will maintain a diverse population and explore the domain.

Once the set of parent individuals has been selected, new individuals are created through

variation of these existing solutions. The two methods of applying variation are mutation

and recombination. Mutation acts on a single individual and is similar to the variation

operator used in hill climbing or simulated annealing. Unlike search algorithms that operate

on only a single candidate solution, EAs maintain a population of individuals which allows

for creating new candidate solutions from multiple existing individuals. Recombination is a

variation operator that combines parts of two individuals to create new ones.

In addition to controlling the search through selection, search can also be directed by

the replacement method. Some EAs replace the entire population with the newly generated

o�spring. Others keep some of the better individuals and replace the rest with the newly

created individuals.

As with other search algorithms, evolutionary search is run until a prespeci�ed stopping

criteria is met. The most common stopping criteria is to run the EA for a predetermined

number of generations. If the �tness value of the desired solution is known ahead of time,

search can be run until a solution with this �tness is found. Alternatively, the EA can be

run until the population has converged. Convergence can be a measurement of the diversity

of the population � in which case the search halts after the population diversity is below

some predetermined value � or failure to �nd a new best point after a given number of

generations.

3



One of the distinguishing characterics between the di�erent branches of evolutionary

algorithms is the representation upon which the operate. Genetic algorithms (GAs), devel-

oped by Holland at the University of Michigan, [55], distinguish between the genotype and

the phenotype. With GAs the genotype, which is what the variation operators act upon, is

usually encoded as a binary string and is translated to the phenotype for evaluation. Inde-

pendent of the work of Holland, evolutionary strategies (ESs) were developed in Germany

in the 1960s by Bienert, Rechenberg and Schwefel [11] and in California evolutionary pro-

gramming (EP) was developed by Fogel, Owens and Walsh [39]. Both ESs and EP operate

on individuals encoded as a real-valued vector � although EP started as the evolution of

�nite state machines before changing to real-valued vectors [38]. Finally, genetic program-

ming (GP) is Koza's extension of GAs in which the individual being evolved is a computer

program [81]. Although, unlike GAs, the mapping from genotype to phenotype is discarded

and genotype is a computer program.

1.2 Design Representations

To justify investigation into design representations, it is necessary to examine the di�erent

parts of an evolutionary design system to see where scalability, through the hierarchical reuse

of organizational units, can be achieved. Breaking down an evolutionary design system into

its separate modules yields the search algorithm, the representation and the design problem

[71]. Assuming that the problem has already been selected, that leaves only the search algo-

rithm and the design representation to be considered. While the evolutionary algorithm can

a�ect the degree of reuse in an evolved design, the ability to create structures which reuse

subassemblies is limited by the ability of the representation to encode them. For example,

with the parameterization of a table shown in �gure 1.2, no modi�cation to the evolution-

ary algorithm can a�ect the degree of reuse in an evolved design, nor is the hierarchical

construction of organizational units possible. Thus the ability to automatically generate

structures which have a reuse of subassemblies is strongly dependent on the representation
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p1

p2

p3

p4 p5

p6

p7 p8

Figure 1.2: Parameterization of a table.

used by the evolutionary design system.

The di�erent types of representations for evolutionary designs systems can be classi�ed

by how they encode designs. First, designs can be split into parameterizations, such as the

parameterization of a table in �gure 1.2, or open-ended representations. Since one of the goals

of evolutionary design systems is to achieve truly novel artifacts, this dissertation focuses on

open-ended representations, those in which the topology of a design is changeable, because it

is di�cult for a parameterization to achieve a type of design that was not conceived of by its

programmers. Open-ended representations can be split into non-generative and generative

representations. A generative representation is one in which an encoded design can

reuse elements of its encoding in the translation to an actual design, whereas with a non-

generative representation each element of an encoded design is used at most once in mapping

to an actual design. Both non-generative and generative representations can be further split

into two subcategories. The two subcategories of non-generative representations are direct

and indirect representations. With a direct representation, the encoded design is essentially

the same as the actual design (�gure 1,3.a), and with an indirect representation there is

a translation, or construction process, in going from the encoding to the actual design

(�gure 1.3.b). The two subcategories of generative representations are implicit and explicit.

While both generative paradigms are indirect, implicit representations can be thought of

as a direct representation with reuse, and explicit representations can be thought of as
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(a) Direct mapping (a non-generative representation).

put-brick3
turn-up
put-brick1
put-brick1
put-brick1
put-brick1
turn-down
put-brick2
put-brick2
put-brick2
turn-down
put-brick1
put-brick1
put-brick1
put-brick1
put-brick3

build-leg()
(

repeat (4 times) (
put-brick1

)
)

build-surface(width) (
repeat (width times) (

put-brick2
)

)

main
(

put-brick3
turn-up
build-leg()
turn-down
build-surface(3)
turn-down
build-leg()
put-brick3

)

(b) Indirect mapping (a non-generative
representation).

(c) Explicit, generative representation.

Figure 1.3: Three types of design representations.
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parameterization
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non−generative generative

direct
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indirect implicit explicit

Figure 1.4: Classes of design representations.

indirect representations with reuse. Implicit, generative representations consist of a set

of rules that implicitly specify a shape, such as through an iterative construction process

similar to a cellular automata (CA). Explicit, generative representations are a procedural

approach in which a design is explicitly represented by an algorithm for constructing it

(�gure 1.3.c). Thus explicit generative representations are like GP in that the genotype is a

kind of computer program but, unlike GP and like GAs, this genotype is compiled into the

phenotype. This hierarchy of design representations is shown in �gure 1.4.

1.3 Limitations of Non-Generative Representations

For a number of years it has been recognized that representing designs either directly or

indirectly with non-generative representations will not scale to complex structures [32] be-

cause of the exponential growth in the size of the design space and because the increasing

number of dependencies in a design make it more di�cult to make changes to a design. In

the �rst case, as a design grows in the number of parts the expected distance (in number

of parts) between a starting design and the desired optimized design increases. Conversely,

changing a single part makes a proportionately smaller and smaller move towards the desired

design. One consequence of this is that as designs increase in the number of parts, search

algorithms will require more steps to �nd a good solution. Increasing the size of variation
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(by changing more parts at a time) is not a solution because as the amount of variation is

increased, the probability of the variation being advantageous decreases. The second case is

similar: as designs become more complex, dependencies develop between parts of a design

such that changing a property of one part requires the simultaneous change in another part

of the design. For example, if the diameter of a screw is changed, then the diameter of the

corresponding nut must also be changed or the parts will no longer �t together. Similarly,

if the length of a table leg is changed, then all of the other table legs must be changed or

the table will be unbalanced. Non-generative representations are not well suited to handling

these increases in size and complexity because their language for representing designs is

static.

1.4 Advantages of Generative Representations

Unlike a non-generative representation, the ability to reuse elements of an encoded design

improves the ability of search to navigate large design spaces and improves scalability by cap-

turing design dependencies. First, navigation of large design spaces is improved through the

ability to manipulate assemblies of components as units. For example, if adding/removing

an assembly of m parts would make a design better, this would require the manipulation of

m elements of the design encoding with a non-generative representation. With a generative

representation, abstraction allows for these assemblies to be inserted/deleted through the

change of a single symbol, and iteration allows for the addition/deletion of multiple copies

of groups of parts through changing the iteration counter. Secondly, reuse of elements of an

encoded design allows a generative representation to capture design dependencies by giving

it the ability to make coordinated changes in several parts of a design simultaneously. For

example, if the diameter of a screw and nut are controlled by the same parameter, then

changing the value of the parameter will change the diameter of both screw and nut si-

multaneously. Or, if all the legs of a table design are a reuse of the same component, then

changing the length of that component will change the length of all table-legs simultaneously
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build-leg()
(

repeat (5 times) (
put-brick1

)
)

build-surface(width) (
repeat (width times) (

put-brick2
)

)

main
(

put-brick3
turn-up
build-leg()
turn-down
build-surface(3)
turn-down
build-leg()
put-brick3

)

build-leg()
(

repeat (4 times) (
put-brick1

)
)

build-surface(width) (
repeat (width times) (

put-brick4
)

)

main
(

put-brick3
turn-up
build-leg()
turn-down
build-surface(3)
turn-down
build-leg()
put-brick3

)

(a) Changing the table leg procedure. (b) Changing the table top procedure.

(c) Table created by (a). (d) Table created by (b).

Figure 1.5: Two changes to the generative representation in �gure 1.3.c.
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(see the examples in �gure 1.4).

The utility of a generative representation comes in combining it with an evolutionary

algorithm. The generative representation provides an open-ended and low-bias method of

representing candidate designs and the evolutionary algorithm provides a means of auto-

matically tuning the representation to incorporate the good bias that is learned through the

search process. The resulting automated design system is capable of learning dependencies

between parts of the design and which assemblies of parts are good for reuse. Thus, for

comparable command-sets, evolution with a generative representation should outperform

evolution with a non-generative representation.

1.5 Contributions

In showing the advantages of generative representations this work makes several contribu-

tions to the �eld of evolutionary design. This section lists the three main contributions.

First, previous work has not identi�ed clear properties of representations. Without

clear properties, existing classi�cations are either ambiguous or do not have boundaries that

make meaningful distinctions between di�erent types of representations. Taking computer

programming languages as a basis, distinct properties of representations are identi�ed in

chapter 2 and, using these properties, representations are classi�ed as either non-generative

or generative.

Second, in this work a generic design system calledGENRE, for generative representations,

is described. Most evolutionary design systems evolve designs for a single class of structures,

consequently there has been no comparisons between representations on multiple classes of

designs. The method for producing designs with GENRE is based on an explicit, gener-

ative representation that generates an assembly procedure for constructing a design. An

advantage of this approach is that the evolutionary design system and generative represen-

tation can be applied to any problem in which designs are constructed by interpreting the

commands of an assembly procedure. This is demonstrated by applying GENRE to four
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Figure 1.6: Three classes of designs: (a), voxel structures; (b), neural networks; and (c),
robots.
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di�erent problem domains: voxel structures; neural networks; robots; and neural-network

controlled robots. Tables are chosen as a representative of static designs (�gure 1.6.a). This

design space consists of a 3D array of voxels with dimensions 40×40×40. For the second

problem domain, this system is used to evolve neural networks. Evolving neural networks

demonstrates that this system is useful not only for creating designs of physical structures,

but also of more abstract entities such as software (�gure 1.6.b). The third domain is that of

creating robots with simple oscillating actuators and the fourth domain consists of combin-

ing the design of a robot's morphology along with the design of its controller (�gure 1.6.c).

In addition, appendix C describes how this system can be used to evolve computer programs

to sort lists of numbers.

Finally, it is hypothesized that a generative representation is better than a non-generative

representation because the ability to reuse encoded data elements results in more evolvable

designs and improves the ability of the evolutionary algorithm to explore large design spaces.

This hypothesis is tested by a comparison between the generative and non-generative repre-

sentations on the four di�erent design problems. Results from this comparison support the

claim that evolutionary search with a generative representation will �nd designs with higher

�tness by creating designs with more evolvable encodings and by exploring a wider range of

the design space.

1.6 Outline

The remaining chapters of this thesis are organized as follows. In chapter 2, properties of

design representation languages are identi�ed and related work in evolutionary design is

reviewed. Chapter 3 is a description of GENRE, the evolutionary design system used in

this thesis. GENRE consists of the design constructor and evaluator, the generative repre-

sentation compiler and the evolutionary algorithm. In addition to describing the di�erent

parts of the evolutionary design system, it contains an introduction to Lindenmayer sys-

tems, which forms the basis for the generative representation used here. The four di�erent
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design domains in which designs are evolved are described in chapter 4. In addition to

describing each domain and the command set for constructing designs in them, this chapter

gives examples of designs encoded with the generative representation. Chapter 5 presents

the results of comparing a non-generative representation to a generative representation on

the di�erent problem domains. The results show better performance is achieved with the

generative representation and also verify that the generative representation does create, and

reuse, components. In chapter 6, these results are used to argue that evolution with a gen-

erative representation is capturing intrinsic properties of the design problem, resulting in

more evolvable designs and exploration of a larger design space than evolution with a non-

generative representation. The ideas and claims of this thesis are summarized in chapter 7,

which also presents directions for future work. Finally, the appendices give examples of de-

signs encoded with the generative representation, describe additional work on the domains

of two-dimensional robots and sorting programs, and list the source code for compiling the

generative representation into an assembly procedure.
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Chapter 2

Related Work

Having decided to focus on design representations, it is useful to de�ne some of their proper-

ties. Because the mapping from an encoded design to an actual artifact can be considered a

computational process, design representations can be thought of as programming languages,

with encoded designs being programs in this language. With this analogy, features of pro-

gramming languages can be used to understand and classify di�erent approaches to the

underlying representations of evolutionary systems. From [2], programming languages have

features of:

• Combination: Languages create the framework for the hierarchical construction of

more powerful expressions from simpler ones, down to atomic primitives.

• Control-�ow: All programming languages have some form of control of execution,

which permits the conditional and repetitive use of structures.

• Abstraction: Both the ability to label compound elements (to manipulate them as

units) and the ability to pass parameters to procedures are forms of abstraction.

In implementation, these elements can be parceled out to di�erent mechanisms, such as

branching, variables, bindings, recursive calls, but are nonetheless present in some form in

all programmable systems. Some of these basic properties have also been shown to have

analogues in biological systems: phenotypes are speci�ed by combinations of genes; the
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expression of one gene can be turned on/o� by the expression of another gene [84]; and an

upstream protein can control a downstream protein's activity through a signaling pathway

[6].

The meanings of combination, control-�ow and abstraction translate almost directly from

properties of programming languages to properties of design representations. Combination

refers to the ability to create more complex expressions from the basic set of commands

in the language. While the subroutines of GLib [8] and genetic programming (GP)1 allow

explicit combinations of expressions, combination is not fully enabled by mere adjacency

or proximity in the strings utilized by typical representations in genetic algorithms. Two

types of control-�ow are conditionals and iterative expressions. Conditionals can be imple-

mented with an if-statement, as in GP, or a rule which governs the next state in a cellular

automata (CA). Iteration is a looping ability, such as the repeat structure in cellular en-

coding [51]2, or embedded in the fundamental behavior of CA's. Abstraction is the ability

to encapsulate part of the genotype and label it such that it can be used like a procedure,

such as with automatically de�ned functions (ADFs) in GP [82] or automatically de�ned

sub-networks (ADSNs) in cellular encoding. Abstraction can be seen when subfunctions can

take parameters, as with ADFs.

Using these properties of programming languages to understand and classify design rep-

resentations, a fundamental distinction is whether a design representation is non-generative

or generative. With a non-generative representation each representational element of an

encoded design can map at most once to an element in a designed artifact. Figure 1.3

shows non-generative representations that map both directly (�gure 1.3.a) and indirectly

(�gure 1.3.b) to a design. Even though the indirect representation of (b) requires a transla-

tion process to produce the artifact, it is a non-generative representation because no elements

of the encoded design can cause the reuse of an encoding's data elements in constructing

the artifact. A generative representation, on the other hand, is one with which design

encodings are capable of reusing elements of the encoded design in the construction of the
1GP is the branch of evolutionary algorithms in which each individual is a computer program [81].
2Cellular encoding is reviewed later in this chapter in section 2.3.
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artifact. Continuing with the programming language analogy, a generative representation is

a kind of language such that elements in the data structure of the encoded design, together

with a translation or compilation process, control the �ow of execution, allowing for a reuse

of elements in the encoded data structure in producing the artifact (�gure 1.3.c).

This chapter consists of several section which review the related work in the �eld of

evolutionary design. As the following reviews will show, there has not been a de�nite trend

to more powerful representations. Consequently, this review will group design represen-

tations by design substrate and not by class of representation. This categorization also

simpli�es the review of those design systems which have multiple types of representations �

whether for the purpose of comparison or as a result of later work on a given system. The

di�erent problem domains into which design systems are categorized are: the evolution of

two-dimensional computer images; the creation of shapes; the evolution of neural networks;

and the concurrent evolution of robot morphology and controller. The �nal section is a brief

summary of the need for the further investigation of design representations.

2.1 Evolution of Images

The �eld of evolutionary art has produced a variety of systems which use evolutionary

algorithms to produce two-dimensional images. Because of the di�culty in constructing

a mathematical function to evaluate the artistic value of an image, the evolution of these

systems is usually directed by a user. The user controls evolution by choosing parents for

the next generation from a selection of images in the current generation.

One of the �rst examples of the evolution of images is Dawkins' evolution of two-

dimensional pixel shapes, called biomorphs [28]. Biomorphs are encoded in a vector of

sixteen real values which encode for the number of branches, segments, scale, and the hori-

zontal and vertical extent of lines. As will be noted later, the images produced by Dawkins'

generative representation inspired a number of people to develop systems for the evolu-

tion images and shapes. The generative nature of this representation comes from iterative
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loops which are controlled by elements in an individual's parameter vector. Not realized in

this representation is combination, because there is no method to construct subvectors into

atomic units, nor does this representation have conditionals or any form of abstraction.

Another approach to creating computer images is the work of Sims [116] which uses

genetic programming [81] to specify the colors of every pixel in an image. In this case, the

evolved programs take two parameters, x and y, and return the color index to be assigned

to the pixel at those coordinates. The properties which this representation has are com-

bination, which is inherent in the tree-structure of commands, parameterization, and this

representation also has an external form of iteration in that the entire program is applied

to each pixel. Rooke [106] has extended this approach by including iterative functions, such

as the Mandlebrot set, as primitives in the GP language to achieve a more organic look.

Similar to genetic programming, is the computer graphics community's use of Linden-

mayer systems (L-systems)3 as a representation for producing realistic plants [104]. Ochoa

used an L-system with a single production rule to produce two-dimensional plants using a

�tness function that combines height, weight, branching and ability of leaves to collect sun-

light [101]. Jacob used parametric, context-sensitive L-systems to produce plants with leaves

at a given range from the base [67], and that maximized the size of a plants shadow and

the number of leaves and blossoms [68] [69]. While these systems do not have iteration or

conditionals, the di�erent production rules of an L-system are a form of labeled expressions,

as well as combination, and parametric L-systems have parameterization and conditionals.

One of the non-programmatic representations is that of the Escher Evolver project [35].

This system uses an evolutionary algorithm to evolve tiled pictures in the style of Escher.

Images are represented in a vector of sixty-nine integer values which specify the initial size

and shape of a parallelogram, transformations on it, line drawings in the shape, and colors.

The resulting object is then tiled to create the �nal image. This representation has none of

the properties of design representations.

The properties of the systems reviewed in this section are summarized in table 2.1. For
3Since L-systems are used as the basis for the generative representation in this dissertation they are

described in section 3.1.
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Table 2.1: Properties of the di�erent representations for evolving images.

Combination Control Flow Abstraction
System Iter. Cond. Labels Param.
Direct Non-generative
Escher Evolver [35] no no no no no
Explicit Generative
Biomorphs [28] no yes no no no
Jacob [69] yes no yes yes yes
Ochoa [101] yes no no yes no
Rooke [106] yes yes no no yes
Sims [116] yes yes no no yes

more details of other evolutionary art projects, see [111] [106] and [135].

2.2 Evolution of Shape

Because there have been a large number of evolutionary design systems for the evolution of

shapes, the di�erent design representations are reviewed by type of representation.

2.2.1 Non-Generative Representations for Shape

One obvious method for representing a design is to use a boolean array to specify whether

or not there is material at a particular location. An example of this kind of representation is

the work of Kane and Schoenaur [72] [73], in which the cross-section of a beam is optimized

to maximize its moment of inertia while reducing its weight. A two-dimensional array was

used to represent designs with recombination and mutation acting on blocks of these arrays.

Another example which directly represented designs with an array is work of Baron in which

the two-dimensional cross-section of a beam is evolved to minimize the number of voxels used

while falling under the maximum allowable stress [13]. Designs are described by an array

of 32×64 bits that is represented by a string of 2048 bits. In both cases, the representation

is not able to combine elements of the encoded data structure to create assemblies, nor is

it able to manipulate the translation from genotype to phenotype through some form of
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control-�ow or abstraction.

Schoenauer later compares three di�erent non-generative representations on the evo-

lution of a two-dimensional cantilever design [113] [114]. The �rst representation is the

two-dimensional array representation of [72]. The second representation consists of a set of

rectangles that encode for holes in a design. Each rectangle is de�ned by its height, width

and location. The third representation is a set of points that specify a Voronoi diagram.

Each point represents a cell and is either the existence of material or empty space. While

none of these representations have the ability to combine elements of the genotype or have

any form of control-�ow or abstraction, the latter two representations (both indirect) more

compactly encode designs than the �rst representation (a direct one).

Two di�erent methods towards more generic design systems are Bentley's system for

creating shapes out of cuboids and Roston's grammar based Genetic Design system. Bent-

ley's system uses cuboids � with variable width, height and depth � as a more generic atom

for constructing shapes [16] [17]. In addition to specifying the dimensions of a cuboid, the

cuboids can also be intersected with a plane of variable orientation allowing for resulting

shapes to have surfaces at arbitrary angles. The representation for encoding designs is a

tree-structured assembly procedure for attaching cuboids. By using a basic unit of con-

struction, this system was able to evolve ables, portable steps, heat sinks, optical prisms,

and streamlined shapes. Roston's Genetic Design (GD) system evolves derivation trees for

context sensitive grammars [110]. Interesting in this work is the recognition that by creating

a system that uses a general grammar, it can be applied to any design problem in which

a grammar can be crafted for creating a design by changing the set of terminals and/or

the design constructor. Using his system, Roston evolves frames for the leg positions of

an abstract, two-dimensional robot with a simple genetic-programming-style controller and

evolves four-bar systems for passing through an ordered set of �ve points. In both Bent-

ley's and Roston's systems, the use of a tree-structured representation provides an implicit

ability to combine elements of the genotype, yet neither representations have the ability to

direct the �ow of translation through conditionals or iteration, nor do they have any form
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of abstraction � although abstraction could be added in a way similar to the automatically

de�ned functions (ADFs) of GP [82] or the automatically de�ned sub-networks (ADSNs) of

cellular encoding (reviewed in section 2.3).

Expanding on functionality is the evolution of buildable structures by Funes [48] [49]

[47] using LEGO bricks as the basic component. Similar to the work in evolving trusses,

this system tests designs in a simulator to determine if the structure will stay together or

fall apart. The representation for designs is a tree-structured encoding that speci�es the

connection of bricks, starting from a ground position, similar to that of Bentley [16]. As

with Bentley's and Roston's systems, the tree-structured representation provides an implicit

form of combination but no ability to control the �ow of translation nor does it have any

form of abstraction.

Another example of a tree-structured representation is the explicit embryogeny of Bentley

and Kumar [15]. In this representation a tree-structured assembly procedure is used to

specify the attachment of basic parts for a two-dimensional, tesselating tile problem. As

with Bentley's earlier work [16] and Funes' system [48], this representation has an implicit

form of combination, but no forms of control-�ow or abstraction.

Another paradigm for the automatic design of shapes is the �eld Shape Grammars [120].

A shape grammar is a set of rules for transforming a given shape(s) into another shape(s).

It di�ers from the previous systems in that the shapes that are transformed are emergent

from the interaction between objects in a design. For example, two overlapping triangles will

create at least one more triangle. This last triangle is an emergent result and if the shape

grammar has rules for transforming triangles these rules can be applied to this emergent

triangle. The typical approach to creating a shape with a shape grammar is to use simu-

lated annealing [75] to iteratively modify a design, encoded with a direct representation, by

applying one of the rules in the grammar. Shape grammars have been used to produce a

variety of shapes including truss structures [115], co�ee machines [3], and MEMS resonators

[4]. Di�culties with shape grammars are in developing systems that can automatically rec-

ognize all emergent shapes in a design, and then adjusting the representation of elements
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in the design to allow for the manipulation of emerged shapes. Since implementations of

shape-grammar design systems use a direct representation to store the current state of the

design, these representations have no properties of control-�ow or abstraction.

2.2.2 Implicit, Generative Representations

Indirect, generative representation consist of a set of design rules which interact to con-

struct a design implicitly, such as with cellular automata and arti�cial chemistries [31].

These cellular-automata-style rules contain iteration, through the repeated application of

construction rules, and conditionals, which are present in the form of determining which

rule to apply. As described in the following reviews, these systems can also contain param-

eters.

One of the earliest methods for generating shapes with computers is the work of Frazer

in which the evolutionary design system is a kind of cellular automata for creating objects

[42]. His initial work, called concept seeding, consisted of producing designs through the

application of a series of manually constructed Fortran subroutines which transformed a seed

shape by rotating, stretching, growing or shearing it [41]. Initially the GA was used to evolve

the seed shape [44], and later it was also applied to the evolution of the transformation rules

[42]. Frazer has applied his system to a variety of di�erent shapes such as slabs, columns,

and cells in an isospatial grid [43]. This technique, as with all forms of cellular-automata

representations, has iteration through the repeated application of the cell-updating rules

and uses conditionals to determine which update-rule to apply.

Similar to Frazer's system are the representations of Bentley and Kumar [15] and Bonabeau

[20]. In Bentley and Kumar's representation [15], which they call an implicit embryogeny,

each rule for growing a design consists of a precondition, that speci�es when the rule can

be applied, and an action to be taken if the precondition is satis�ed. Actions can either

�ll in a neighboring cell or empty the current cell. A design is created by starting from an

initial con�guration of the grid and then iteratively applying the rules, as with CAs, for a

�xed number of iterations. Using this representation, tesselating tile shapes were evolved
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in two-dimensional arrays of size 4×4, 8×8 and 16×16. Bonabeau's system [20] is modeled

after the construction ability of social insects. Unlike most other systems in which cells

are either on or o�, cells in this system are able to take on one of multiple state values.

The genotype consists of a set of templates for a given state of cells which specify which

neighboring cells are to be �lled. The �tness function does not evaluate structures for func-

tionality, rather it scores them for containing patterns. Structures were evolved inside a 16

× 16 × 16 grid. These representations have both iteration and conditionals, as with the

other cellular-automata-style representations, but no form of combination or abstraction.

More like a traditional cellular automata is that of de Garis' augmented cellular automata

[30]. In addition to maintaining a boolean cellular state, each cell also has a set of NEWS

variables. These variables store the number of neighbor cells in the ON state in each of the

four directions, North, East, West and South. In addition to using cell states to determine

which rule to use to update a cell, NEWS values are used as conditionals as part of the

automata rules. This use of cell states is not a form of parameterization because these

values are state information that is not passed to other cells.

Finally, the property of parameterization is realized by Eggenberger's method of growing

three-dimensional shapes from an arti�cial genome with an arti�cial chemistry [34]. Shapes

are evolved in a 30×30×30 grid, using a measure of an object's symmetry about the x axis

as a �tness function. The genome representation for designs is a linear string which consists

of regulatory genes, for switching other genes in the genome, and structural genes, which

encode for speci�c chemicals. Each gene consists of six integers, with values in the range of

0-6, that specify its operation within a cell. Shapes evolved with this system have regular

structure and symmetry with hundreds of parts. By treating each cell of a shape as an

arti�cial neuron and adding rules for connecting neurons, this system has also been used

to evolve neural networks [33]. Parameterization is achieved through the use of arti�cial

substances that a�ect the switching of genes.

A di�erent method of constructing shapes with a cellular automata is Taura and Na-

gasaka's Shape Feature Generating Process (SFGP) [123]. In this process, the internal envi-
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ronment of a two-dimensional shape is speci�ed, and then growth rules are used to specify

the division of dots (metaphors for a cell) on the surface. After development is complete, the

�nal shape is formed by creating an outer surface using the density of dots to determine the

distance from the initial shape. Growth rules resemble rules for cellular automata, with the

condition based on the density of dots and the action specifying how to divide a dot. Later

work has extended this system to three-dimensional shapes [122]. Again, this representation

has iteration and conditionals, but no properties of control-�ow or abstraction.

2.2.3 Explicit, Generative Representations

Explicit, generative representations are an extension of indirect, non-generative represen-

tations by adding reuse through either iteration or abstraction. One example of such an

extension is shown in �gure 1.3 in which (c) is created by adding iteration, abstraction and

parameters to (b).

Expanding on the work of Dawkins (described in section 2.1), Todd and Latham devel-

oped Mutator for the evolution of three-dimensional sculptures [128] [126]. With Mutator,

structures are de�ned by an expression in a geometrical construction language that speci�es

the shape, shape properties, shape transformations, the number of repetitions of a shape

and angles between shapes. In the original implementation it is these parameters that are

evolved and not the expression. More recently the representational power was increased

by adding the ability to evolve the grammar as well as parameters [127]. In this system

evolution is guided by a user, who selects which individuals should reproduce from a dis-

play of the individuals in the current population. The grammar allows for the hierarchical

de�nition of forms, but sub-forms cannot be labeled for use in other parts of a form expres-

sion, consequently this representation has combination and iteration, but not conditionals

or abstraction.

Rosenman [107] [109] [108] describes a hierarchical grammar for building two-dimensional,

grid-based, �oor plans. Unlike other evolutionary design systems, this work uses multiple

evolutionary runs to evolve di�erent levels of the design. At the �rst level, the shape of
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rooms are evolved which, once done, become the basic shapes for the next round of evolu-

tion, which is the evolution of �oor plans. Here, the rules operate on the design itself, and

not an assembly procedure. The genotype is a hierarchical assembly plan for building rooms

from houses. While individuals do not have the ability to reuse of parts of the grammar

through iteration, the ability to build a design from elements evolved in an earlier round of

evolution is both a form of combination and labelled procedures.

Broughton, Coates and Jackson [22] [25] [66] use a Lindenmayer system (L-system) as

the representation for evolving shapes in an isospatial grid. The L-systems consist of a single

production rule, F , and terminals for placing a sphere in each of the twelve sides, for exam-

ple: F → (F(F POS3(F POS2) F F)). Using this representation shapes were evolved for a

number of di�erent �tness functions consisting of minimizing/maximizing the area projected

to a vertical and/or horizontal plane. In addition, a symbiotic coevolutionary experiment

was performed in which two L-systems are coevolved, with one L-system evaluated for its

ability to enclose space into rooms and the other L-system evaluated for its ability to �ll in

space. As with the L-system representations for the evolution of images, section 2.1, this

representation has combination and labeled expressions.

Another explicit representation, which is a kind of procedural version of Frazer's work

[42], is the combination of superquadric modeling primitives [14] with constructive solid

geometry[65] [98]. In both systems evolution is guided by a user and was used to produce a

variety of shapes such as headless screws [65], and cars and vases [98]. Designs are encoded

with a direct network of nodes, with each node specifying a shape-expression. The directed

network of nodes allows for shapes to be de�ned recursively and is a way of adding reuse,

through abstraction, to tree-structured representations.

An alternative to constructing a �nal design from a number of simpler shapes is to de�ne

an object by a surface. One system for creating a surface is the work of the Emergent Design

group at MIT which uses an L-system for producing a set of points that de�ne a surface [125]

[54]. This system uses the standard turtle-graphics command set of L-systems described in

[104] to move a turtle in a three-dimensional area. Each stop of the turtle becomes a point
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for specifying a surface in this space. Since the turtle turns in angles of 90◦, curves are

produced by including gravitational attractors/repellers to warp the space.

2.2.4 Summary

Table 2.2: Properties of the di�erent representations for the evolution of shapes.

Combination Control Flow Abstraction
System Iter. Cond. Labels Param.
Direct Non-generative
Baron, Tuson and Fisher [13] no no no no no
Kane and Schoenauer [72] no no no no no
Shape grammar systems no no no no no
Indirect Non-generative
Bentley [16] yes no no no no
Bentley and Kumar - explicit [15] yes no no no no
Funes [47] yes no no no no
Genetic Design [110] yes no no no no
Schoenauer [114] no no no no no
Implicit Generative
Bentley and Kumar - implicit [15] no yes yes no no
Bonabeau [20] no yes yes no no
de Garis [30] no yes yes no no
Eggenberger [34] no yes yes no yes
Frazer [42] no yes yes no no
SFGP [123] no yes yes no no
Explicit Generative
Broughton, Coates and Jackson [22] yes no no yes no
Emergent Design Group [125] [54] yes no no yes no
Mutator [126] yes yes no no no
Rosenman [109] yes no no yes no
Superquadrics [65] [98] yes no no yes no

The properties of the di�erent representations for the evolution of shape are summarized

in table 2.2, in which they are grouped by which class of design representations they belong

to.
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2.3 Evolution of Neural Networks

In addition to the evolution of physical designs, EAs have been applied to creating neural

networks [137]. EAs have been used to evolve the weights of neural networks, [96] [136],

just the network topology [95], and both the topology and the connection weights [10]. This

section consists of a review of a representative sampling of the evolution of neural networks

in which both the weights and the topology of the networks are evolved.

In [99] [100] a simple developmental model is used for growing neural networks. Networks

are created by placing each neuron on a two-dimensional plane and growing connections

between them. The representation consists of a sequence of genes, with each gene encoding

the parameters for a given neuron. Gene parameters consist of a conditional specifying

whether or not the neuron exists, the neuron's properties (such as location), and rules for

how to grow links. The growth rules are similar to those of Dawkins [28] and specify the

branching angle and segment length for growing a tree from the neuron's location. This

representation has both forms of control �ow: conditionals, for switching neurons on/o�;

and iteration in the growth of links from the neurons.

A paradigm for specifying individuals that uses conditionals, but does not have reuse,

is the structured GA (sGA) [26]. The individuals of an sGA consist of two strings, A and

B, of binary values, in which the �rst string acts as a switch for turning on/o� sections of

the second string. The length of the second string is a multiple of the �rst string � if A is

of length S then the length of B is kS � and the value at location Ai speci�es whether the

k bits starting from Bik are used. In applying this to neural networks, the values in B were

used as the weights in a weight matrix and the values in A used to select which connections

existed [27]. This is a non-generative representation as there is no reuse of the genotype.

One of the �rst examples of using a grammar to grow a neural network is the work

of Kitano [76]. Kitano's system used an L-system on matrices was used to generate the

connectivity matrix of a network. The grammar rules consisted of a non-terminal symbol

and a 2 × 2 matrix of symbols and numbers that it is rewritten with. A consequence of
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replacing symbols with a 2 × 2 matrix is that the the resulting matrices having dimension

2n. This system was applied to the encoder/decoder problem of sizes 4×4 and 8×8 for

which it achieved better convergence with a smaller genotype than did a non-generative

representation. This grammar is a generative representation because each grammar rule is

a kind of labeled procedure which can be reused.

Another early example of the use of L-systems to generate neural networks is the work of

Boers and Kuiper [18] [19]. In this system each terminal symbol in the L-system represents

a neuron in the neural network and groupings of symbols inside brackets are used to specify

connectivity of the network. Because there is a one-to-one mapping from terminal symbols

to particular neurons in the neural network, neural networks with a large number of neurons

would require an equally large alphabet of terminals, which limits the ability of this system

to scale to large networks.

Similar to the grammatical systems for constructing neural networks is that of cellular

encoding in which a network is constructed through the parsing of a tree [51]. Each node

of the tree is a network construction command that changes the network by performing

an operation on one of the nodes. Reuse of parts of the construction tree comes through

iteration. Iteration is done with a recurse node, that indicates that the parsing of the tree

should start at the root. This node also contains a counter for controlling the number of

times to perform this loop. This system was later extended to include abstraction by using

labeled subtrees called automatically de�ned sub-networks (ADSNs) [50] [52], which are

similar to the ADFs of GP [82].

One variation on cellular encoding is edge encoding [89]. With edge encoding, each

node in the assembly tree is an operator that acts on an edge (instead of a node) such

as by duplicating it, reversing, or splitting in half with a new node in between the two

edges. Advantages of edge encoding are that at most one link is created with a construction

command so each construction command can specify the weight to attach to that link

and, unlike cellular encoding, sub-trees of construction commands will create the same sub-

network independent of where in the construction-tree they are located. Other variations
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of cellular encoding di�er mainly by adding new commands to the network construction

language [46] [45].

A synthesis of the growth method of [99] and a tree-structured grammar of [51] is the

system of [77]. In this system each node in the tree is a command for creating a neuron,

a link, or adjusting the properties of a neuron. Neuron creation commands create a new

neuron at a given distance and direction from the parent neuron. Link creation commands

create a link between the current neuron and the closest neuron in the speci�ed direction.

Evolved networks were applied to the task of controlling the legs of a simulated hexapod to

make it walk forward.

Instead of evolving a graph structure, the work of Mautner and Belew used a grammar

to iteratively divide a rectangle and interpreted the resulting structure as a network [91] [90].

The grammar, which is like an L-system, consists of non-terminals, which are also rules for

splitting a rectangle in two, and terminals, for specifying the �nal state of a rectangle. Each

rectangle in the �nal structure represents a neuron, with the rectangle's state specifying how

it is connected to its neighbors. Evolved networks were used to control a simulated agent in

a 500×500 grid-world.

Table 2.3: Properties of the di�erent representations for constructing neural networks.

Combination Control Flow Abstraction
System Iter. Cond. Labels Param.
Indirect Non-Generative
sGA [27] no no yes no no
Implicit Generative
Nol� and Parisi [99] no yes yes no no
Explicit Generative
Boers and Kuiper [18] yes no no yes no
cellular encoding [51] yes yes no yes no
edge encoding [89] yes yes no yes no
Kitano [76] yes no no yes no
Kodjabachian and Meyer [77] yes no no yes no
Mautner and Belew [90] yes no no yes no
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Table 2.3 is a summary of the di�erent properties of the representations for the evolution

of neural networks.

2.4 Concurrent Evolution of Morphology and Controller

One of the original inspirations for this thesis was the evolution of an arti�cial creature's

morphology and controller. The evolution of arti�cial creatures has come a long way since

Dawkins' evolution of two-dimensional shapes [28]. Serial manipulators have been evolved

by evaluating the ability of their end manipulator to achieve a set of con�gurations [74; 23;

102; 24]; and tree-structured robots have been evolved that met a set of of requirements

on static stability, power consumption and geometry [37; 36; 83]. Controllers have been

evolved for �xed morphologies: �rst with stimulus-response rules for animated, articulated

creatures [97] [130]; then with neural controllers [53]; and more recently for the dynamic gait

of a physical, quadruped robot [56]. More true to the spirit of arti�cial life is the evolution

of both body and brain, starting with Sims' evolution of block creatures � for swimming,

walking and light seeking [118], as well as competing for the possession of a box [117] �

and Ventrella's evolution of stick �gures for walking [131]. This has been followed by the

evolution of walking creatures by [78] [88] and [21], summarized in [124]. In this section the

various systems for the evolution of a virtual robot's morphology and controller are reviewed

in chronological order, with a focus on the di�erent representation schemes.

Sims used an embedded, directed graph representation to specify the construction of

his creatures [117] [118]. Nodes in the top layer of the graph represent body segments,

inside of which is another graph for the body segment's neural controller. An advantage

of encapsulating the neural units inside the nodes for body segments is that copying or

recombining subgraphs automatically swaps the associated neural controller for a section

of body parts. This representation is generative because cycles in the graph, along with a

recursive-limit parameter, are procedural constructs that specify the number of times nodes

in the cycle are to be traversed in the construction phase. But the two-layer structure does
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not allow a repetition of the neural processing units inside a body-segment because they are

directly encoded as a design inside a body node.

The stick creatures evolved in Ventrella's work [131; 132; 133] are encoded as �xed-

length vectors of parameters for constructing a creature. Parameters specify the number of

segments for a central backbone, the number of opposing limbs, the number of segments in

each limb, joint angles and details for the oscillator network. While this representation is

generative in the sense that it allows reuse of the genotype, the structure of what can be

reused is �xed and not evolvable.

The genotypes of creatures in Framsticks [80; 78] are encoded as a linear assembly

procedure for constructing a creature, with bracketing, which turns the basic structure from

a string to a tree. Commands in the command set attach sticks to existing ones as well as

construct the neural controller � a command for creating a neuron attaches it to the stick

most recently created and is then followed by a sequence of link connections. More recently

they have compared their original representation, called recur for direct recurrent, against

the actual representation used by the simulator, simul, and a tree-structured representation,

called devel for developmental [79]. Simul consists of a list of all objects (sticks, joints,

neurons, sensors and actuators) that make up a creature, along with all of that object's

attributes. Devel is a tree-structured version of recur with iteration through a repeat node

for repeating a subtree. Of these, only devel is generative because it is the only representation

that allows for reuse of the genotype.

In GOLEM [88], the representation of a creature is the design itself. Both the morphol-

ogy and neural controller are stored as graph-based data structures with links connecting

actuated joints to neurons in the network. One challenge in using a graph-based represen-

tation is in implementing meaningful recombination operators between graphs. In this case,

mutation was the only variation operator implemented.

The genotypes in the work of Bongard and Pfeifer [21] are a set of gene expression rules

for growing creatures under a simulated ontogenetic process. These rules determine the

division of body segments based on simulating chemical concentrations inside each segment.
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Each segment also contains a neural controller, which is developed by the gene expression

rules using cellular encoding commands [51]. Bongard and Pfeifer report that similarities

between parts of a creature also have similar gene expression patterns, suggesting that

this method can produce modular creatures. Here reuse comes about through an iterative

loop external to the evolved representation; at each update gene-rules are applied to the

developing creature.

Table 2.4: Properties of the di�erent representations.

Combination Control Flow Abstraction
System Iter. Cond. Labels Param.
Direct Non-Generative
Framsticks-simul [78] no no no no no
GOLEM [88] no no no no no
Indirect Non-Generative
Framsticks-recur [78] yes no no no no
Implicit Generative
Bongard and Pfeifer [21] no yes yes no no
Explicit Generative
Framsticks-devel [79] yes yes no no no
Sims [118] yes yes no no no
Ventrella [131] no yes no no no

The properties of the di�erent representations used for the evolution of a robot's mor-

phology and controller are summarized in table 2.4.

2.5 Classi�cations of Design Representations

Classes of design representations and arguments for how to improve scalability have gen-

erally used the �eld of developmental biology for inspiration. While some have argued

against existing types of representations they have suggested no alternative beyond pointing

to the biological growth of organisms [32] [30]. The work that has looked deeper into de-

sign representations has not clearly identi�ed useful properties of representations nor has it

supported claims for the advantages of developmental representations. In this section these
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investigations into design representations are reviewed.

Angeline [9] classi�es representations as translative development functions, generative de-

velopment functions, and adaptive development functions. With a translative development

function the mapping from encoded design to artifact is trivial (one-to-one and independent)

or near trivial. This corresponds to a non-generative representation in which the mapping

can be either direct or indirect. A generative development function is de�ned as one with

a recursive de�nition, such as Lindenmayer systems (L-systems) [87], production systems

and genetic programming (GP) with automatically de�ned functions (ADFs) [82]. This def-

inition of generative development functions is similar to generative representations, but the

former includes derivation trees for grammars while the latter excludes them because each

symbol in the derivation tree is used at most once. Finally, adaptive development functions

are de�ned as those in which the development function can be changed over the course of

evolution. The distinction between generative and adaptive development functions is that

with a generative development function the change in the development system a�ects only

the individual in which the change was made, whereas with an adaptive development func-

tion it can a�ect all individuals in the population. An example of this is Angeline's work

on GLiB [8] in which parts of an individual's genotype can be encapsulated as modules

for any other individual in the population to use. Thus a generative representation may

not be an adaptive development function because changes in its structure may only a�ect

that individual and an adaptive development function may be non-generative in that each

individual could be a derivation tree for a globally de�ned grammar.

Without comparing di�erent types of design representations, Angeline claims that a

representation which uses a development function to map from encoded design to actual

design may be more evolvable. By this he means that applying variation to a developmentally

encoded individual is more likely to result in a better individual, and large structures can

be evolved in less time with developmental representations.

Bentley and Kumar [15] draw inspiration from embryology to classify representations

as: no embryogeny, external embryogeny, explicit embryogeny, and implicit embryogeny.
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Representations in which there is a one-to-one mapping between elements in the encoded

design and elements in the actual design have no embryogeny. This is the same as a direct,

non-generative representation and Angeline's translative development function. Embryoge-

nies are those in which there is an indirect mapping between the genotype and attributes

of the phenotype are created by multiple elements of the genotype (polygeny). With an

external embryogeny, the developmental rules are not changeable by the search algorithms,

rather parameters for such a system are evolved. For an explicit embryogeny the rules for

creating a design are procedural, such as with genetic programming [81] and Lindenmayer

systems [104] but could also be a derivation tree for a grammar in which the nodes of the

derivation tree are explicit rules for constructing a design. Thus an explicit embryogeny

can be either generative or non-generative. Finally, the development rules of an implicit

embryogeny indirectly specify a design, such as with cellular automatas and arti�cial DNA

systems. Implicit embryogenies are generative, because they require the iterative reuse of

rules, and correspond to implicit generative representations.

Bentley and Kumar's argument for embryogenies is that they have the bene�ts of re-

ducing the search space, provide a better enumeration of the search space, allow for more

complex artifacts, have repetition and are more adaptable. It is not clear that their em-

bryogenies will lead to scalable design systems with these bene�ts. Searching in a reduced

search space will be faster, but has the possibility of leaving out good solutions and is not a

general solution to the scalability problem because it requires the programmer to manually

reduce the search space. Similarly, if the mapping between design encoding and artifact is

static, then the enumeration of the search space has been chosen by the programmer. Thus

while one embryogeny (mapping) may be more adaptable, they admit that another one may

be more di�cult and it is up to the designer of the embryogeny to pick a good one. Repeti-

tion need not be from reuse of the parts of the genotype but may be from a non-generative

representation in which multiple parts of the genotype use the same translation rule, such as

with the grammars in Roston's system [110]. Their experiments with the di�erent embryo-

genies on a two-dimensional tiling problem of various sizes compare results with respect to
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�tness and encoding size. In their comparison the implicit embryogeny scaled best, followed

(in order) by the non-embryogeny, the explicit embryogeny and the external embryogeny;

showing that an embryogeny may not be more scalable than a non-embryogeny. This does

not fully support their claim that embryogenies are better than non-embryogenies. Using

a generative/non-generative classi�cation the results show that reuse is a good property

because the generative representation (here the implicit embryogeny) �nished ahead of the

three non-generative representations.

Komosinksi and Rotaru-Varga [79] compare three di�erent representations on three dif-

ferent problems within the class of articulated creatures. Although they use di�erent terms,

their three representations match the style of representations in �gure 1.3: simul, a direct

low-level encoding, matches the direct representation in �gure 1.3.a; recur, which they call

a direct recurrent encoding is an indirect, non-generative representation matching that in

�gure 1.3.b; and devel, an indirect developmental encoding, is of the style of the repre-

sentation in �gure 1.3.c. The characteristics they identify for these representations (rated

in terms of none/low/variable/high) are: genotype complexity; interpretation complexity;

body constraints; brain constraints; modularity; compression; and redundancy. Of these,

only modularity and redundancy are comparable with the properties listed at the start of

this chapter. Comparing these three representations on the separate tasks of optimizing

height and velocity, it was found that recur and devel were better then simul, but found

little di�erence between recur and simul. Since evolved designs tended to have few parts

with all three representations it is likely that the generative representation a�orded little

advantage because either the design space was not conducive to large designs (neither recur

or simul were able to generate creatures with closed loops) or the problems did not require

complex solutions. The authors concluded that representations should be high-level and

structured.

In summary, the classi�cation systems and representations of previous work have both

similarities and di�erences to that of generative/non-generative representations. The clas-

si�cation systems of Angeline [9] and Bentley and Kumar [15] recognize that an indirect
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relationship between the encoded design and resulting artifact is necessary for design repre-

sentations to scale but neither recognize reuse of data elements of the encoded design as an

essential property for scalability. A representation that separates their classi�cations from

that of generative representations is a simple derivation tree for a grammar. This mapping

quali�es as a developmental function and an embryogeny � it may even result in repetition

in the artifact through the reuse of grammar rules � but because it does not allow for parts

of the derivation tree itself to be reused it is not a generative representation. While the

properties which Komosinski and Rotaru-Varga [79] give for design representations do not

match those given in this dissertation, the three representations they use are examples of

a direct, non-generative representation, an indirect, non-generative representation and an

indirect, generative representation.

2.6 Summary

In this chapter related work in evolutionary design and design representations was reviewed.

Comparing the representations from di�erent classes shows that each class tends to have

a di�erent set of properties. While the representations of one of the implicit, generative

representations is parameters, not present in any of these systems is the ability to combine

construction rules or procedure labels. Compared to implicit representations, the explicit,

generative representations have three advantages from using a procedural approach for con-

structing designs. First, an explicit, procedural approach allows for the property of com-

bination: assemblies of parts can be encapsulated into a unit which can then be readily

transfered from one individual to another. Second, an explicit representation allows for a

modularization of the representation such that di�erent parts of the artifact encoding create

di�erent parts of the artifact. This modularization enables changes to be made to one part

of an artifact without a�ecting other parts, unlike with an implicit representation in which

this ability is inhibited by the interaction between construction rules. The third advantage

with a procedural approach is that the separation between the encoding and the construc-
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tion of a design results in a generic design system: di�erent classes of design can be evolved

by merely changing the set of construction commands and the design builder, [110].

While a wide variety of representations have been used for many di�erent problems, there

is little guidance for how to construct a representation that will scale to complex designs.

With the exceptions of Roston's Genetic Design system [110], and Soddu's Argenia [119],

design systems have been used for creating only single class of designs. Consequently, for

those design systems that do produce interesting designs, part of the reason may be from a

tight coupling of the design system to the design space and the representation may not be

transferable to a di�erent class of designs. Previous examination of design representations

suggest only that a representation be indirect [9] [15] and high-level [79]. Thus the goals

of this dissertation � the identi�cation of di�erent properties of design representations and

showing the importance of reuse � address the need for further investigation into design

representations.
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Chapter 3

Methods

The evolutionary design system used to compare a generative representation to a non-

generative representation is GENRE. This system consists of the design constructor and

evaluator, the compiler for the generative representation, and the evolutionary algorithm.

Each design is speci�ed by a sequence of construction commands for building the artifact,

called an assembly procedure. For the non-generative representation, an individual's geno-

type is an assembly procedure. With the generative representation, each individual consists

of a program which is then compiled into an assembly procedure. This programming lan-

guage for encoding assembly procedures is based on Lindenmayer systems (L-systems) [104],

which are a type of grammar for producing sequences of characters (strings). By using an

indirect, non-generative representation and an explicit, generative representation, these two

representations can be applied to di�erent design substrates by changing only the set of

construction commands and the design constructor.

The �rst two sections of this chapter describe the two representations used by GENRE

and the evolutionary algorithm used to evolve designs. In describing the representations

used in this thesis, section 3.1 begins with an introduction to L-systems and expands on

this description to describe how L-systems are used as the generative representation. This is

followed by a description of the non-generative representation. The second section describes

the details of the particular evolutionary algorithm used for evolving designs. Since the
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canonical evolutionary algorithm was already described in section 1.1, this section goes

into detail on the parts of the EA that are speci�c to this representation; namely how the

population is initialized and how mutation and recombination operate on the representations.

3.1 Generative Representations

In this thesis, each design is encoded as a Lindenmayer system (L-system) [86]. L-systems

are a grammatical rewriting system introduced to model the biological development of mul-

ticellular organisms, with rules applied in parallel to all characters in the string just as cell

divisions happen in parallel in multicellular organisms. Complex objects are created by suc-

cessively replacing parts of a simple object by using the set of rewriting rules. This section

begins with an introduction to basic L-systems, then describes parametric L-systems, the

class of L-systems used in this thesis, and concludes with a description of how L-systems

are used as a generative representation.

3.1.1 Basic L-systems

L-systems are a class of rewriting systems. Rewriting consists of going through a sequence

of symbols and replacing each symbol with another symbol, or subsequence of symbols,

and a rewriting system consists of a set of rules for specifying how symbols are rewritten.

By iteratively applying the set of rewrite rules from a starting symbol, a complex string is

created from a succession of simpler ones. For example, the L-system,

a : → a b

b : → b a
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if started with the symbol a, produces the following strings,

a

ab

abba

abbabaab

3.1.2 Turtle Interpretation and Bracketed L-systems

One application of L-systems is as a method for generating natural-looking plants [104].

This creates drawings by interpreting the symbols of the string produced by an L-system as

commands for a LOGO-style turtle [1].

(a) (b) (c) (d)

Figure 3.1: Drawing with a turtle.

An example of drawing with a turtle is shown by the sequence of images in �gure 3.1.

The language used by this turtle is: f, moves the turtle forward; l, turns the turtle 90◦ to

the left (counter-clockwise); and r, turns the turtle 90◦ to the right (clockwise). Executing

the command sequence flf produces the sequence: the starting state, �gure 3.1.a; executing

f, �gure 3.1.b; executing l, �gure 3.1.c; and executing f, �gure 3.1.d. Thus the command

sequence flf is an assembly procedure for creating the line in �gure 3.1.d.

A shortcoming of this drawing language is that the turtle can only draw a single, un-

broken line. To add a branching ability to turtle drawing, brackets, `[' and ']', are used

to store/retrieve the turtle's state � which consists of its location and heading � to/from

a stack. Thus interpreting the sequence f[lf][rf]f produces the sequence of drawings in
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(a) (b) (c) (d)

Figure 3.2: Drawing with a turtle, using brackets.

�gure 3.2. The command f moves the turtle forward, �gure 3.2.a. In executing [lf] the

current state of the turtle is pushed onto a stack by the opening bracket [, the commands lf

turn the turtle left and move it forward, then the stored turtle-state is popped o� the stack

with the command ], �gure 3.2.b. Similarly, the commands [rf] push the turtle's state to

the stack, turn it right and move it forward, then restore the saved state, �gure 3.2.c. The

�nal command f moves the turtle forward, �gure 3.2.d.

Table 3.1: Design language for voxel structures.

Command Description
f Move the turtle forward.
l Rotate the turtle's heading δ◦ to the left.
r Rotate the turtle's heading δ◦ to the right.
[ ] Push/pop state to stack.

The commands f, l, r, and [] are more generally de�ned in table 3.1. With these

commands the amount of rotation caused by the commands l and r acan be controlled by

changing the constant δ. An example L-system that uses this command language is,

A : → f [ l A ] [ r A ] f A

This L-system produces the following sequence of strings,
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1. A

2. f[lA][rA]fA

3. f[lf[lA][rA]fA][rf[lA][rA]fA]�[lA][rA]fA

4. f[lf[lf[lA][rA]fA][rf[lA][rA]fA]�[lA][rA]fA][rf[lf[lA][rA]fA][rf[lA][rA]fA]

�[lA][rA]fA]�[lf[lA][rA]fA][rf[lA][rA]fA]�[lA][rA]fA

By ignoring the symbol A, these strings can be used to create drawings. With δ set to 30◦,

these drawings are shown in �gures 3.3.a through d. This L-system can be used to produce

a variety of tree-like images by coloring the lines brown and green and using di�erent for δ.

The images in �gure 3.3.e and d show tree-like images for two di�erent values of δ in which

lines which have children branching from them are colored brown and lines which have no

children are colored green.

3.1.3 Parametric L-systems

Another extension of basic L-systems is the class of parametric L-systems [87] (PL-systems).

This class di�ers from basic L-systems in that the production rules of PL-systems have pa-

rameters, there can be algebraic expressions applied to parameter values and parameter

values can also be used in determining which production rule to apply. A production rule

consists of three components: the predecessor, the condition and the successor. For exam-

ple, a production with predecessor A(n0, n1), condition n1 > 5 and successor B(n1+1) c

D(n1+0.5, n0-2) is written as:

A(n0, n1) : n1 > 5 → B(n1+1)cD(n1+0.5, n0−2)

A production matches a module in a parametric word i� the letter in the module and the

letter in the production predecessor are the same, the number of actual parameters in the

module is equal to the number of formal parameters in the production predecessor, and the

condition evaluates to true if the actual parameter values are substituted for the formal

parameters in the production.
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(a) δ = 30◦, iteration 2. (b) δ = 30◦, iteration 3.

(c) δ = 30◦, iteration 4. (d) δ = 30◦, iteration 5.

(e) δ = 25.7◦, iteration 5. (f) δ = 36◦, iteration 5.

Figure 3.3: Trees constructed from the L-system in section 3.1.2.
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For example, the PL-system,

a(n) : (n > 1) → a(n− 1) b(n)

a(n) : (n ≤ 1) → a(0)

b(n) : (n > 2) → b(n/2) a(n− 1)

b(n) : (n ≤ 2) → b(0)

when started with a(4), produces the following sequence of strings,

a(4)

a(3)b(4)

a(2)b(3)b(2)a(3)

a(1)b(2)b(1.5)a(2)b(0)a(2)b(3)

a(0)b(0)b(0)a(1)b(2)b(0)a(1)b(2)b(1.5)a(2)

a(0)b(0)b(0)a(0)b(0)b(0)a(0)b(0)b(0)a(1)b(2)

a(0)b(0)b(0)a(0)b(0)b(0)a(0)b(0)b(0)a(0)b(0)

Previously EAs have been combined with L-systems to evolve neural networks [76] [19],

plants [68] [101] and architectural structures [25]. For the most part, this past work has used

non-parametric L-systems whereas here parametric L-systems are used. An advantage of a

parametric L-system over a non-parametric L-system is that a given PL-system can produce

a family of strings, with the speci�c string determined by the starting parameter(s). For

example, the parameter to a production rule can be used as the argument to the repeat

command to specify the number of times a substring is to be repeated. Furthermore, para-

metric L-systems naturally allow for parametric commands in the language � the parameter

to a network construction command can specify the weight of a newly created link in the

network or the parameter to a rod-creation command can specify the rod's length.
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3.1.4 L-systems as a Generative Representation

Of the properties of design representations listed in section 2.5, P0L-systems have condi-

tionals, abstraction and parameters. The generative representation of this thesis includes

iteration through a looping ability that is new to L-systems. Looping is performed by

the replication of symbols within enclosed parenthesis, so that { block }(n) repeats the en-

closed block of symbols n times. Block replication is similar to for-next loops in computer

programs and is almost identical to the multiple rewriting of the recurrent symbol of cellu-

lar encoding [52] and the recursive-limit parameter in graph encoding [117]. For example

{abc}(3) translates to, abcabcabc. In this implementation the unraveling of block-replication

loops is left until the �nal iteration. For example the generative representation,

P0(n0) : n0 > 1.0 → [ P1(n0 ∗ 1.5) ] a(1) b(3) c(1) P0(n0 − 1)

P1(n0) : n0 > 1.0 → { [ b(n0) ] d(1) }(4)

when started with P0(4) produces the following sequence of strings,

1. P0(4)

2. [ P1(6) ] a(1) b(3) c(1) P0(3)

3. [ { [ b(6) ] d(1) }(4) ] a(1) b(3) c(1) [ P1(4.5) ] a(1) b(3) c(1) P0(2)

4. [ { [ b(6) ] d(1) }(4) ] a(1) b(3) c(1) [ { [ b(4.5) ] d(1) }(4) ] a(1) b(3)

c(1) [ P1(3) ] a(1) b(3) c(1) P0(1)

5. [ { [ b(6) ] d(1) }(4) ] a(1) b(3) c(1) [ { [ b(4.5) ] d(1) }(4) ] a(1) b(3)

c(1) [ { [ b(3) ] d(1) }(4) ] a(1) b(3) c(1)

6. [ [ b(6) ] d(1) [ b(6) ] d(1) [ b(6) ] d(1) [ b(6) ] d(1) ] a(1) b(3) c(1) [

[ b(4.5) ] d(1) [ b(4.5) ] d(1) [ b(4.5) ] d(1) [ b(4.5) ] d(1) ] a(1) b(3)

c(1) [ [ b(3) ] d(1) [ b(3) ] d(1) [ b(3) ] d(1) [ b(3) ] d(1) ] a(1) b(3)

c(1) b(3)
For implementation reasons constraints are added to the P0L-system. The condition

is restricted to be comparisons as to whether a production parameter is greater than a
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constant value. Parameters to design commands are either a constant value or a production

parameter. Parameters to productions are equations of the form: [ production parameter |

value ] [ + | - | × | \ ] [ production parameter | value ].

In addition to storing the grammar of an L-system, each individual in the EA also stores

the starting condition, or seed, and the number of rewriting iterations. The �rst production

rule, P0, is always used as the starting symbol, consequently the starting condition consists

of the initial arguments to this rule. After performing the speci�ed number of rewriting

iterations, the resulting string of symbols is stripped of all production rule symbols so that

it consists of only construction commands, resulting in an assembly procedure for building

a design.

To create designs with these L-systems, the non-production symbols are interpreted as

construction commands in a design construction language. After undergoing a given number

of iterations of rewrites, the �nal string produced is passed on to a design constructor to

build the design. Using the key: (a = up; b = forward; c = down; and d = left); this

L-system is the same as that of the example in section 4.1.1, which shows how this L-system

produces a voxel-based design. Thus the resulting system is a kind of programming language

with loops, function-calls and a user-speci�ed command-set.

Figure 3.4.a shows a graphical representation of the rules for our generative representa-

tion. In these images cubes represent procedure calls, grey spheres represent conditionals,

pyramids represent the repeat operator and spheres represent construction commands (such

as those listed in chapter 4). Figure 3.4.b shows the sequence of assembly strings generated

by this set of rules. The sequence begins with the �rst cube (here a blue and red one) and

the sequence of strings below it are the strings generated after each iteration of parallel

replacement.

3.1.5 L-systems as a Non-Generative Representation

The non-generative representation is implemented as an L-system with one production rule,

no arguments, one condition-successor pair whose condition always succeeds, and without
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(a)

(b)

Figure 3.4: Graphical rendition of the generative representation, (a), along with the sequence
of strings produced, (b).
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the repeat operator (iteration) or the ability to call production rules (abstraction). Removing

abstraction and control-�ow from an L-system reduces it to a degenerate case in which it is

a single string of terminal symbols. By implementing the non-generative representation as

a degenerate case of the generative representation, the evolutionary design system is able to

use the same variation operators on both representations so that the only di�erence between

the two representations is the ability to reuse elements of the genotype.

3.2 Evolutionary Algorithm

The evolutionary algorithm used to evolve designs is the canonical generational EA with

specialized variation operators. A non-generative representation and a generative repre-

sentation are used to encode designs, both of which are implemented as L-systems. The

L-system for the non-generative representation is di�erent from the generative representa-

tion in that it does not have conditionals or the ability to re-use part of the encoding through

iteration or abstraction. The non-generative representation is implemented as a single pro-

duction rule, with no arguments, containing 1 condition-successor pair (whose condition

always succeeds), and without the repeat operator or the ability to call production rules.

Implementing both non-generative and generative representations in the same way allows

the same initialization procedure and variation operators to be used on both representa-

tions. The initial population of L-systems is created by making random production rules.

After individuals are evaluated, their probability of being selected as parents is calculated

using exponential scaling [94] and then parents are selected using stochastic remainder se-

lection [12] with an elitism of two. New individuals are created through applying mutation

or recombination (chosen with equal probability) to individuals selected as parents. This

process of evaluation, selection, and reproduction is then repeated for a �xed number of

generations. In addition, data is kept for each L-system as to which production rules and

successors were used, as well as the value range for each parameter. This data, similar to

the environment frame of a programming language, allows variation operators to be applied
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only to those production rules which were used. It also allows historical-based constraints

on the mutation of conditional values. Since variations sometimes create an invalid robot

(with too many/few rods, or the body parts intersect at some point while moving) variation

operators are tried a second time, for a particular set of parents, if the �rst attempt did not

create an o�spring whose �tness was at least 10% of that of its parent(s). As initialization,

mutation and recombination are dependent on the representation these are now described

in greater detail.

3.2.1 Initialization

An initial L-system is created from a blank template of a �xed number of production rules,

each with a �xed number of condition-successor pairs. Conditions are created by randomly

picking a parameter and a constant value to compare against. Successors are created by

stringing together sequences of randomly generated blocks of one to three characters, which

may be enclosed by push and pop symbols, `[' and `]', or block replication symbols, `{' and
`}'. Examples of initial blocks of characters are: a(2.0) b(3.0) c(4.0), { P2(n1+2.0,n1/3.0)

d(3.0) }(2), and [ a(n0) ].

After an L-system is created, it is evaluated. L-systems that score below a preset thresh-

old are discarded and a new one is randomly created in its place. This way the initial

population consists of a variety of di�erent solutions, each of which is a design whose �tness

is above some minimal value.

3.2.2 Mutation

Mutation creates a new individual by copying the parent individual and making a small

change to it. To mutate the L-system, a production rule is selected at random from one

of the used production rules. Possible changes that can occur are: replacing one command

with another command, generated at random; perturbing the parameter of a command by

adding/subtracting a small value to it; changing the parameter equation in a production rule;

adding/deleting a block of commands in a successor; changing the condition equation; or
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encapsulating a sequence of commands and placing them in a previously unused production

rule. In addition, an individual can be mutated by perturbing one of the seed parameters

used to start the L-system or by recombining it with itself.

For example, if the production P0 is selected to be mutated,

P0(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1) c(3.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 1.0, n0/2.0) ]

some of the possible mutations are,

Mutate an argument:

P0(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1) c(3.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 2.0, n0/2.0) ]

Delete random character(s):

P0(n0, n1) : n0 > 5.0 → { a(1.0) }(n1) c(3.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 1.0, n0/2.0) ]

Insert a random block of 1-3 character(s):

P0(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1) e(4.0) c(3.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 1.0, n0/2.0) ]

Encapsulate a sequence of character(s):

P0(n0, n1) : n0 > 5.0 → P2(n0,n1) c(3.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 1.0, n0/2.0) ]

P2(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1)

n0 > 2.0 → { a(1.0) b(2.0) }(n1)

To illustrate how small changes in the genotype can produce large changes in the pheno-
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(a)

(b)

Figure 3.5: A single mutation to the individual in �gure 3.4 produces the L-system in (a),
which produces the sequence of strings in (b).
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type, an example of swapping the order of two symbols is shown in �gure 3.5. The L-system

in �gure 3.5.a has the order of two symbols in the second successor of the second produc-

tion symbol, resulting in large changes in the phenotype, as can be seen by comparing the

strings produced: �gure 3.4.b contains the original sequence of strings and the results after

the change is shown in �gure 3.5.b.

3.2.3 Recombination

Recombination takes two individuals, p1 and p2, as parents and creates one child individual,

c, by making it a copy of p1 and then replacing part of p1 with part of p2. This is done by

replacing one successor of c with a successor of p2, or replacing a sub-sequence of commands

in a successor of c with a sub-sequence of commands from a successor in p2.

For example if parent 1 has the following rule,

P3(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1) c(3.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 1.0, n0/2.0) ]

and parent 2 has the following rule,

P3(n0, n1) : n1 > 3.0 → b(3.0) a(2.0) c(1.0)

n0 > 1.0 → P1(n1 − 1.0, n1 − 2.0)

Then some of the possible results of a recombination on successor P3 are:

Replace an entire condition-successor pair:

P3(n0, n1) : n1 > 3.0 → b(3.0) a(2.0) c(1.0)

n0 > 2.0 → d(4.0) [ P1(n1 − 1.0, n0/2.0) ]

Replace just a successor:

P3(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1) c(3.0)

n0 > 2.0 → P1(n1 − 1.0,n1 − 2.0)
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Replace one block with another:

P3(n0, n1) : n0 > 5.0 → { a(1.0) b(2.0) }(n1) c(3.0)

n0 > 2.0 → d(4.0) [ b(3.0) a(2.0) ]

3.3 Summary

Table 3.2: Properties of GENRE 's non-generative and generative representations.

Combination Control Flow Abstraction
System Iter. Cond. Labels Param.
GENRE : indirect non-generative yes no no no no
GENRE : explicit generative yes yes yes yes yes

In this chapter the non-generative and the generative representation were described, as

well as the evolutionary algorithm that was used to evolve designs with them. The prop-

erties of these representations are listed in table 3.2. Unlike the generative representations

reviewed in chapter 2, GENRE 's generative representation has reuse through both iteration

and parameterized procedures. Whereas iteration produces exact copies of the repeated

genotype, parameterized procedures can act as a parameterized module, with the resulting

phenotype depending on the input parameters.
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Chapter 4

Design Domains

The generative representation system described in chapter 3 is generic and can be applied to

di�erent design domains by using a di�erent command set and/or design constructor. This

chapter describes four di�erent design domains that are used in chapter 5 to compare the

non-generative and generative representations. The �rst class of designs consists of static

structures built from voxels. The second class of designs is that of neural networks. The

third class of designs consists of robots, constructed from Tinker-ToyTM -like parts, with

actuated joints that oscillate through a �xed range. Combining the second and third classes

results in neural-network controlled robots, which is the fourth class of designs. In this

chapter the languages used for these four classes of designs are described.

4.1 Voxel Structures

The �rst class of designs consists of three-dimensional static objects constructed of voxels

(cubes). Commands in the command set are instructions to a LOGO-style turtle, and are

listed in table 4.1. For the construction of three-dimensional shapes, a three-dimensional

matrix is used to store the absence/presence of material at a particular location, similar to

the methods of [72] and [13]. This matrix starts out empty and voxels are �lled when the

turtle enters them. The commands `[' and `]' push and pop the current state � consisting
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Table 4.1: Design language for voxel structures.

Command Description
[ ] Push/pop state to stack.
forward(n) Move in the turtle's positive X direction n units.
back(n) Move in the turtle's negative X direction n units.
up(n) Rotate heading n× 90◦ about the turtle's Z axis.
down(n) Rotate heading n×−90◦ about the turtle's Z axis.
left(n) Rotate heading n× 90◦ about the turtle's Y axis.
right(n) Rotate heading n×−90◦ about the turtle's Y axis.
clockwise(n) Rotate heading n× 90◦ about the turtle's X axis.
counter-clockwise(n) Rotate heading n×−90◦ about the turtle's X axis.

of the current position and orientation � to and from a stack. Forward moves the turtle

forward in the current direction and back moves the turtle backwards, both place a block

in the space if none exists. Turn left/right/up/down/clockwise/counter-clockwise rotate the

turtle's heading about the appropriate axis in units of 90◦.

The images in �gure 4.1 show intermediate stages in the construction of an object.

Initially there is a single cube in the design space, �gure 4.1.a. After executing the commands

forward(2), two cubes are added to the �rst, �gure 4.1.b. The image in �gure 4.1.c shows

the design after executing right(1) forward(1), which turns the orientation of the turtle

90◦ to the right and then adds a cube after moving forward one space. The �nal image,

after executing up(1) forward(3), is shown in �gure 4.1.d.

Since the construction language only allows voxels to be placed next to existing vox-

els, evolved designs are guaranteed to generate a single, connected structure. The design

simulator then determines the stability of the object. Once an L-system speci�cation is

executed, and the stability of the object is determined, the resulting structure is evaluated

by a pre-speci�ed �tness function.

4.1.1 Generative Representation Example for Voxel Structures

The following is an example encoding of a design using the generative representation and

the construction language of table 4.1 for building designs with voxels. It consists of two
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(a) (b)

(c) (d)

Figure 4.1: Building an object.

productions with each production containing one condition-successor pair:

P0(n0) : n0 > 1.0 → [ P1(n0 ∗ 1.5) ] up(1) forward(3)

down(1) P0(n0− 1)

P1(n0) : n0 > 1.0 → { [ forward(n0) ] left(1) }(4)

Interpreting the build commands as controls for a turtle in a three-dimensional voxel world

this L-system creates the trees in �gure 4.2. Starting this design encoding with P0(4),

produces the following sequence of strings,
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1. P0(4)

2. [ P1(6) ] up(1) forward(3) down(1) P0(3)

3. [ { [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [ P1(4.5) ] up(1)

forward(3) down(1) P0(2)

4. [ { [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [ { [ forward(4.5)

] left(1) }(4) ] up(1) forward(3) down(1) [ P1(3) ] up(1) forward(3) down(1)

P0(1)

5. [ { [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [ { [ forward(4.5) ]

left(1) }(4) ] up(1) forward(3) down(1) [ { [ forward(3) ] left(1) }(4) ] up(1)

forward(3) down(1)

6. [ [ forward(6) ] left(1) [ forward(6) ] left(1) [ forward(6) ] left(1) [ forward(6)

] left(1) ] up(1) forward(3) down(1) [ [ forward(4.5) ] left(1) [ forward(4.5)

] left(1) [ forward(4.5) ] left(1) [ forward(4.5) ] left(1) ] up(1) forward(3)

down(1) [ [ forward(3) ] left(1) [ forward(3) ] left(1) [ forward(3) ] left(1) [

forward(3) ] left(1) ] up(1) forward(3) down(1) forward(3)

Executing this string with the design constructor produces the structure shown in �g-

ure 4.2.a. Trees of arbitrary size can be created by starting the production system with a

di�erent argument � the tree in �gure 4.2.b is created from this system by starting it with

P0(6).

4.2 Neural Networks

The method for constructing the neural controllers for the arti�cial creatures is based on that

of cellular encoding [51]. The main di�erence is that build commands operate on the links

connecting the nodes, as with edge encoding [89], instead of on the nodes of the network.

With edge encoding at most one link is created with a network construction command, which

allows each command to also specify the weight to attach to that link, and sub-sequences of

build commands will construct the same sub-network independent of their location in the
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(a) (b)

Figure 4.2: Two example structures.

assembly procedure. Another distinction between this and cellular encoding is that assembly

procedures for constructing networks are linear sequences of commands (strings) and not

trees. A branching ability is added to strings by using bracketed L-systems [86] with push

and pop operators for storing and retrieving the current link to a stack.

Commands for constructing the network operate on links between neurons and use the

most recently created link as the current one. Push and pop operators, `[' and `]', are used

to store and retrieve the current link-state � consisting of the from-neuron, the to-neuron

and index of the links into these neurons � to and from the stack. This stack of edges allows

branching to occur in the encoding � an edge can be pushed onto the stack followed by a

sequence of commands and then a pop command makes the original edge the current edge

again. The commands for this language are listed in table 4.2, for which the current link

connects from neuron A to neuron B.1

1The description here of split() di�ers from [60; 62] as to which link takes on which weight value � the
de�nition in table 4.2 correctly matches the implementation.
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Command Description
[ ] Push/pop state to stack.
add-input(n) Creates an input neuron with a link from it to neuron B with

weight n.
add-output(n) Creates an output neuron with a link from B to it with weight

n.
decrease-weight(n) Subtracts n from the weight of the current link. If the current

link is a virtual link, it creates it with weight −n.
duplicate(n) Creates a new link from neuron A to neuron B with weight

n.
increase-weight(n) Add n to the weight of the current link. If the current link is

a virtual link, it creates it with weight n.
loop(n) Creates a new link from neuron B to itself with weight n.
merge(n) Merges neuron A into neuron B by copying all inputs of A as

inputs to B and replacing all occurrences of neuron A as an
input with neuron B. The current link then becomes the nth
input into neuron B.

next(n) Changes the from-neuron in the current link to its nth sibling.
output(n) Creates an output-neuron, with a linear transfer function,

from the current from-neuron with weight n. The current-
link continues to be from neuron A to neuron B.

parent(n) Changes the from-neuron in the current link to the nth input-
neuron of the current from-neuron. Often there will not be
an actual link between the new from-neuron and to-neuron,
in which case a virtual link of weight 0 is used.

reverse Deletes the current link and replaces it with a link from B to
A with the same weight as the original.

set-function(n) Changes the transfer function of the to-neuron in the current
link, B, with: 0, for sigmoid; 1, linear; and 2, for oscillator.

split(n) Creates a new neuron, C, with a sigmoid transfer function,
and moves the current link from C to B and creates a new
link connecting from neuron A to neuron C with weight n.

Table 4.2: Design language for neural networks.
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Figure 4.3: Construction of a neural network.
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An example of the construction of a network using this system is shown in �gure 4.3,

which contains the intermediate networks in parsing the following assembly procedure,
split(0.8) duplicate(3) reverse split(0.8) duplicate(2) reverse loop(1) split(0.6) du-

plicate(0.4) split(0.6) duplicate(0.4) reverse parent(1) merge(1)
Networks start with a single neuron, a, which has an oscillator transfer function, and a

single link of weight 0.25 feeding to itself, �gure 4.3.a. After executing split(0.8), a second

neuron is created with a link of 0.8 to the oscillating neuron and the original link of weight

0.25 feeding into it, �gure 4.3.b. Executing duplicate(3), creates a second link from the

second neuron to the �rst, which is then reversed in executing reverse, �gure 4.3.c. The

execution of split(0.8) duplicate(2) reverse, creates a third neuron, �gure 4.3.d. A link from

the third neuron to itself with weight 1 is created by loop(1), with another neuron created

by split(0.6), �gure 4.3.e. This is followed by duplicate(0.4), which creates an additional

link from neuron c to d, and then neuron e is created with split(0.6), �gure 4.3.f. Another

link is created from e to c with duplicate(0.4), which is then reversed, reverse, �gure 4.3.g.

Parent(1) causes a shift of link-state from the c → e link to a new �virtual link� b → e,

shown as a dashed line, �gure 4.3.h. These two neurons are then joined together by the

merge(1) command, and the �nal network is shown in �gure 4.3.i. Once interpreting the

assembly procedure has �nished, networks are simpli�ed by combining the weight values of

links with identical source and destination neurons. Simplifying the network in �gure 4.3.i

results in the weight matrix shown in table 4.3.

Table 4.3: Weight matrix.

Input Output
a c d e

a 0.0 0.8 0.0 0.8
c 0.0 0.0 0.6 3.4
d 0.0 1.0 0.0 0.6
e 0.25 2.4 0.0 0.0

Neurons in the network are initialized to an output value of 0.0 and are updated se-

quentially by applying a transfer function to the weighted sum of their inputs with their
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Table 4.4: Sequence of activation values.

Iteration a c d e
0 1.0 0.0 0.0 0.0
1 0.990000 0.659541 0.376285 0.997058
2 0.770735 0.997711 0.536072 0.999654
3 0.780087 0.998382 0.536358 0.999660
4 0.790085 0.998408 0.536370 0.999666
5 0.800084 0.998433 0.536380 0.999671

outputs clipped to the range ±1. The di�erent transfer functions are: sigmoid, using

tanh(sum of inputs); linear; and an oscillator. Oscillator units maintain a state which

is increased by 0.01 after each update. The output of an oscillator unit is mapped to the

range -1 to 1 by applying a triangle wave function, with a period of four, to the sum of its

inputs and its state. While using oscillating neurons increases the bias for simple networks

with simple oscillating patterns over the sigmoid-only networks used in [78] [88] it is a less

biased model than that of [131], in which all actuators are driven by oscillators, or [118]

which used a variety of transfer functions and oscillating neurons. The initial activation

value for neurons with the sigmoid and linear transfer functions is 0.0 and the initial acti-

vation value for oscillator units is 1.0. An example of the sequence of activation values for

a network is shown in table 4.4, which are the sequence of activation values for the network

from the above example.

4.3 Oscillator Controlled Robots

The third class of designs consists of a Tinker-ToyTM -like world in which robots are built

from rods of regular length and both �xed and actuated joints, �gure 4.4. The turtle

command set for three-dimensional genobots is an extension to the 2D command set of the

previous section. Push and pop operators, `[' and `]', are used to store and retrieve the

current state � consisting of the current location, orientation, and relative phase o�set �

to and from the stack. Turn left/right/up/down/clockwise/counter-clockwise(n) rotate the
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Figure 4.4: Basic building blocks of the system: rods of regular length and �xed and actuated
joints.

turtle's heading about the appropriate axis in units of 90◦. To create rods for robots, forward

moves the turtle forward in the current direction, creating a bar if none exists or traversing

to the end of the existing bar and back goes backwards up the parent of the current bar.

The joint commands move the turtle forward and end with a joint of the speci�ed type

which oscillates at a rate speci�ed by the command's argument. By specifying the rate of

oscillation and relative phase o�set, a wide range of movement patterns can be generated.

Revolute-1(n) creates a joint which oscillates from 0◦ to 90◦ about the Z-axis with speed n,

revolute-2(n) creates a joint which oscillates from −45◦ to 45◦ about the Z-axis with speed

n, twist-90(n) creates a joint which oscillates from 0◦ to 90◦ about the X-axis with speed

n, and twist-180(n) creates a joint which oscillates from −90◦ to 90◦ about the X-axis with

speed n. Combined with the rotation commands these allow actuated joints to be created

that rotate about the primary axes. These commands are listed in table 4.5.

Figure 4.5 contains images of intermediate steps in building a genobot, as well as part
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Table 4.5: Design language for oscillator-controlled, three-dimensional robots.

Command Description
[ ] Push and pop operators; they store/retrieve state to stack.
forward Moves the turtle forward in the current direction, creating a

bar if none exists or traversing to the end of the existing bar.
back Goes back up the parent of the current bar.
revolute-1(n) Forward, end with a joint with range 0◦ to 90◦ about the

current Z-axis and moves with speed n.
revolute-2(n) Forward, end with a joint with range −45◦ to 45◦ about the

current Z-axis and moves with speed n.
twist-90(n) Forward, end with a joint with range 0◦ to 90◦ about the

current X-axis and moves with speed n.
twist-180(n) Forward, end with a joint with range −90◦ to 90◦ about the

current X-axis and moves with speed n.
left(n) Rotate heading n× 90◦ about the turtle's Y axis.
right(n) Rotate heading n×−90◦ about the turtle's Y axis.
up(n) Rotate heading n× 90◦ about the turtle's Z axis.
down(n) Rotate heading n×−90◦ about the turtle's Z axis.
clockwise(n) Rotate heading n× 90◦ about the turtle's X axis.
counter-
clockwise(n)

Rotate heading n×−90◦ about the turtle's X axis.

increase-o�set(n) Increase phase o�set by n× 25%.
decrease-o�set(n) Decrease phase o�set by n× 25%.
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Figure 4.5: Building and simulating a three-dimensional robot.
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of its animation, from the following command sequence,

[ left(1) forward ] [ right(1) forward ] revolute-1(1) forward

The single bar in �gure 4.5.a is built from the string, [ left(1) forward ], and the two bar

structure in �gure 4.5.b is built from, [ left(1) forward ] [ right(1) forward ]. The �nal robot

is made from the command sequence, [ left(1) forward ] [ right(1) forward ] revolute-1(1)

forward, and is shown in �gure 4.5.c, where it is displayed part-way through its movement

cycle. Figure 4.5.d displays the robot with the actuated joint moved half-way through its

joint range.

4.4 Neural-Network Controlled Robots

A robot's morphology and neural controller are constructed by combining the command

sets for constructing body and brain into one language and then building body and brain

simultaneously. This command language consists of the morphology construction commands,

listed in table 4.6, and the neural construction commands from section 4.2. The resulting

language has two push/pop commands with two stacks: ( ), for pushing/popping the link-

state to the link stack; and [ ], for pushing/popping both the morphology and link states to a

stack. A robot's body and brain are joined together by attaching the current input-neuron

to the newly created actuated joint each time a joint command � revolute-1, revolute-2,

twist-90, or twist-180 � is executed. By de�ning joint-creation commands in a way that

a�ects both controller and morphology a connection between body and brain is induced.

An example of an assembly procedure using this language is,

[ right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) forward ] du-

plicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25) split(0.4) reverse

revolute-1(1.0) left(1.0) right(1.0) forward right(1.0) forward right(1.0) forward

right(1.0) forward

A sequence of images showing intermediate stages in the construction of this robot is

contained in �gure 4.6. Before any commands are processed, a robot consists of a single oscil-

67



Table 4.6: Design language for neural-network controlled, three-dimensional robots.

Command Description
[ ] Push and pop operators; they store/retrieve state to stack.
forward Moves the turtle forward in the current direction, creating a

bar if none exists or traversing to the end of the existing bar.
back Goes back up the parent of the current bar.
revolute-1 Forward, end with a joint with range 0◦ to 90◦ about the

current Z-axis that is controlled by the current neuron.
revolute-2 Forward, end with a joint with range −45◦ to 45◦ about the

current Z-axis that is controlled by the current neuron.
twist-90 Forward, end with a joint with range 0◦ to 90◦ about the

current X-axis that is controlled by the current neuron.
twist-180 Forward, end with a joint with range −90◦ to 90◦ about the

current X-axis that is controlled by the current neuron.
left(n) Rotate heading n× 90◦ about the turtle's Y axis.
right(n) Rotate heading n×−90◦ about the turtle's Y axis.
up(n) Rotate heading n× 90◦ about the turtle's Z axis.
down(n) Rotate heading n×−90◦ about the turtle's Z axis.
clockwise(n) Rotate heading n× 90◦ about the turtle's X axis.
counter-
clockwise(n)

Rotate heading n×−90◦ about the turtle's X axis.

decrease-weight(n) Subtracts n from the weight of the current link. If the current
link is a virtual link, it creates it with weight −n.

duplicate(n) Creates a new link from neuron A to neuron B with weight
n.

increase-weight(n) Add n to the weight of the current link. If the current link is
a virtual link, it creates it with weight n.

loop(n) Creates a new link from neuron B to itself with weight n.
merge(n) Merges neuron A into neuron B by copying all inputs of A as

inputs to B and replacing all occurrences of neuron A as an
input with neuron B. The current link then becomes the nth
input into neuron B.

next(n) Changes the from-neuron in the current link to its nth sibling.
parent(n) Changes the from-neuron in the current link to the nth input-

neuron of the current from-neuron. Often there will not be
an actual link between the new from-neuron and to-neuron,
in which case a virtual link of weight 0 is used.

reverse Deletes the current link and replaces it with a link from B to
A with the same weight as the original.

set-function(n) Changes the transfer function of the to-neuron in the current
link, B, with: 0, for sigmoid; 1, linear; and 2, for oscillator.

split(n) Creates a new neuron, C, with a sigmoid transfer function,
and moves the current link from A to C and creates a new
link connecting from neuron C to neuron B with weight n.
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Figure 4.6: Constructing a neural-network controlled robot
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lating neuron and a point, �gure 4.6.a. After executing the commands, [ right(1.0) forward

right(1.0) forward right(1.0) forward right(1.0) forward ], the robot consists of a square of

four rods and the oscillating neuron, �gure 4.6.b. After executing, duplicate(0.25) split(0.4)

reverse revolute-1(1.0), a second neuron is created and it is attached to the actuated joint

at the end of the newly created rod, �gure 4.6.c. The commands, duplicate(0.25) split(0.4)

reverse revolute-1(1.0), are repeated and a third neuron is created and it is attached to an-

other actuated joint, �gure 4.6.d. The last commands, left(1.0) right(1.0) forward right(1.0)

forward right(1.0) forward right(1.0) forward, attach another square onto the end of the last

revolute-1 joint, �gure 4.6.e. Figure 4.6.f shows the creature with the joints halfway through

their movement range.

4.4.1 Generative Representation Example for Neural Network Controlled
Genobots

The following L-system consists of two production rules, each with two condition-successor

pairs and combines the command sets for three-dimensional robots from section 4.3 with

the neural network command set of section 4.2.

P0(n0) : n0 > 3.0 → P1(5.0) P0(n0− 2.0) left(1.0) P1(4.0)

n0 > 0.0 → { duplicate(0.25) split(0.4) reverse revolute− 1(1.0) }(2.0)

P1(n0) : n0 > 4.0 → [ P1(4.0) ]

n0 > 0.0 → { right(1.0) forward }(n0)

This L-system consists of two productions, each containing two condition-successor pairs

and, when started with P0(4), produces the sequence of strings,
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1. P0(4)

2. P1(5.0) P0(2.0) left(1.0) P1(4.0)

3. [ P1(4.0) ] { duplicate(0.25) split(0.4) reverse revolute-1(1.0) }(2.0)

left(1.0) { right(1.0) forward }(4.0)

4. [ { right(1.0) forward }(4.0) ] { duplicate(0.25) split(0.4) reverse

revolute-1(1.0) }(2.0) left(1.0) { right(1.0) forward }(4.0)

5. [ right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) for-

ward ] duplicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25)

split(0.4) reverse revolute-1(1.0) left(1.0) right(1.0) forward right(1.0)

forward right(1.0) forward right(1.0) forward

This last sequence of commands is the example from earlier in this section and the compiled

design is shown in �gure 4.6.

4.5 Robot Simulator

Once a string of construction commands is executed and the resulting robot is constructed,

its behavior is evaluated in quasi-static kinematics simulator, similar to that of [88]. The

kinematics are simulated by computing successive frames of moving joints in small angular

increments of 0.001 radians toward the desired angle. This angle is determined by either an

oscillator or a neuron. Oscillators cycle between -1 and 1 and this is scaled to the joint's

range of motion. Similarly, the output value of a neuron falls within the range of -1 and 1

and this is scaled to the joint's range of motion. After each update the structure is then

settled by determining whether or not the creature's center of mass falls outside its footprint

and then repeatedly rotating the entire structure about the edge of the footprint nearest the

center of mass until it is stable.

To achieve robot designs that are robust to transferal to the real world, error is added

to evolved structures similar to the method of [70] and [63]. A robot design is evaluated by

simulating it three times, once without error and twice with di�erent error values applied
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to joint angles. Error is applied to all connections that are not part of a cycle and is a

random rotation in the range of ±0.1 radians about each of the three coordinate axis. The

returned �tness of an evolved individual is the minimum �tness scored from the three trials.

By implementing error that is �xed throughout a trial and evaluating a design with di�erent

error values, evolved designs are made robust to imperfections in real-world construction.

4.6 Summary

In this chapter design domains for voxel structures, neural networks, oscillator controlled

robots and neural network controlled robots were described and examples were given of

how a design is constructed from an assembly procedure. These domains cover static and

actuated physical structures, software and a combination of software and physical design

thereby providing a general test suite for comparing design representations.
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Chapter 5

Results

To determine if generative representations can capture design dependencies and are bet-

ter able to explore large design spaces, a generative representation is compared against a

non-generative representation (both described in chapter 3) on the four design substrates of

chapter 4. In addition, the amount of reuse of the genotype with the generative representa-

tion is measured. First, the con�guration of the two representations is given.

The non-generative representation was con�gured as an L-system with one production

rule, no arguments, one condition-successor pair whose condition always succeeds, and with-

out the repeat operator (iteration) or the ability to call production rules (abstraction). The

maximum length of the production body was set to 10,000 commands, allowing assembly

procedures of up to 10,000 commands to be evolved. The generative representation used

an L-system with �fteen production rules, two or three condition-successor pairs, and two

parameters for each production rule. For the generative representation, the maximum length

of production body was set to �fteen commands and the maximum allowed length of a com-

piled generative representation was set to 10,000 commands � the same length as with the

non-generative representation. The properties of both the generative and non-generative

representations are listed in table 3.2.

The rest of this chapter presents the results of evolving designs with both a non-

generative and a generative representation on the di�erent classes of designs. Sections 5.1,
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5.2, 5.3 and 5.4 present the results of comparing the non-generative and generative represen-

tations on designing tables, neural networks to solve even-parity, oscillator controlled robots

and neural-network controlled robots. Examples of designs that were transferred to reality

are shown in section 5.5 and these results are summarized in section 5.6.

5.1 Tables

The �rst class of design problems for which comparisons were made was the evolution of

tables in a three-dimensional voxel world. The �tness of a table was a function of its: height,

the maximum number of voxels above the ground; surface structure, the number of voxels

at the maximum height; stability, and the volume of the table as calculated by summing the

area at each layer of the table. Maximizing height, surface structure and stability typically

result in table designs that are solid volumes, thus a measure of excess voxels is used to

reward designs that use fewer bricks, which was the total number of voxels used in the

design, not including those on the surface.

fheight = the height of the highest voxel, Ymax.

fsurface = the number of voxels at Ymax.

fstability =
Ymax∑

y=0

farea(y)

farea(y) = area of the convex hull at height y.

fpenalty = number of voxels not on the surface.

The resulting �tness function combined these measures into a single function1,

�tness = fheight × fsurface × fstability/fpenalty (5.1)

1A more appropriate method of evolving against these criteria may be to use a multi-objective approach
[40].
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The evolutionary algorithm was con�gured to run for 2000 generations using a population

size of 200. After each generation the best two individuals were copied into the next popula-

tion (an elitism of two) and the remaining individuals were created with an equal probability

of using mutation or recombination. The grid size for the voxel world was 40 wide × 40

deep × 40 high.

5.1.1 Evolved Tables and Fitness Comparison
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Figure 5.1: Fitness comparison between the non-generative and generative representations
on evolving tables, averaged over �fty trials.

The graph in �gure 5.1 contains a comparison of the �tness of the best individual evolved

with the non-generative representation against the best individual evolved with the gener-

ative representation, averaged over �fty trials. With the non-generative representation,

�tness improved rapidly over the �rst 300 generations, then quickly leveled o�, improving

by less than 25% over the last 1700 generations. Fitness increased faster with the generative
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(c) (d)

(e) (f)

Figure 5.2: The best six tables evolved using the non-generative representation.
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(e) (f)

Figure 5.3: The best six tables evolved using the generative representation.
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Figure 5.4: Graphs of: (a) height; (b) penalty; (c) stability; and (d) surface values against
generation on the table design problem.

representation, and the rate of increase in �tness did not decrease as quickly as with the

non-generative representation. The �nal results were an average best �tness of 1826158 with

the non-generative representation and 4938144 with the generative representation.

Examples of the best tables evolved with each representation are shown in �gures 5.2 and

5.3. The best tables evolved with the non-generative representation tend to be supported by

only one table-leg, with parts of legs dropping from edges of the table-top. The likely reason

for this is that it is not possible to change the length of multiple table-legs simultaneously

with the non-generative representation, so the best designs (those with the highest �tness)

had only one leg that raised the surface to the maximum height. The additional legs at

the edge of the surface added to a table's �tness by contributing to the stability score.
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In contrast, the best tables evolved with the generative representation were supported by

multiple legs that connected from the �oor all the way to the table-surface.

The graphs in �gure 5.4 show plots of the average height, penalty, stability and surface

values for each generation. From these graphs it can be seen that with the non-generative

representation table designs had small penalty and stability values, suggesting that there

was only one table leg, which was increased over the generations. With the generative

representation, designs had large penalty and stability values, suggesting multiple table-

legs. Despite the dependencies of needing to adjust multiple table legs simultaneously, high

tables were found quickly with the generative representation. It is probable, and evidence

for this will be shown later, that the generative representation was reusing the same part of

the genotype to create multiple table legs, allowing the height of these legs to be adjusted

simultaneously with a single change to the genotype.

Using variations of the �tness function described in section 5.1, the tables shown in

�gure 5.5 are produced with the non-generative representation and the tables in �gures 5.6

and 5.7 are tables evolved with the generative representation. In general, tables evolved

with the non-generative representation were irregular and evolution with this representation

tended to produce designs with few dependencies (most tables were supported by only one

leg) whereas tables evolved with the generative representation had a reuse of parts and

assemblies of parts and were supported with multiple-legs.

5.1.2 Reuse on the Table Design Problem

The di�erence between the generative representation and the non-generative representation

is the ability for a generative representation to reuse parts of the genotype in creating the

phenotype. The graph in �gure 5.8.a plots the average length of the genotypes for both

the non-generative and generative representations as well as plotting the average length

of the assembly procedure produced by the generative representation. From this graph it

can be seen that for the last 1250 generations the average length of encodings with the

generative representation was approximately 310 symbols and the average length of the
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(e) (f)

Figure 5.5: Other tables evolved using the non-generative representation.

80



(a) (b)

(c) (d)

Figure 5.6: Other tables evolved using the generative representation.
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(c) (d)

Figure 5.7: More tables evolved using the generative representation.
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Figure 5.8: Graph of (a) length of the genotypes, and assembly procedure produced by
the generative representation, against generation; and (b) graph of number of parts against
generation.

assembly procedure it compiled to was about 5100 symbols long. Consequently parts of the

genotype were being reused with the generative representation and the average number of

times a symbol in the generative representation was reused in compiling to the assembly

procedure was sixteen times.

It is possible that the generative representation was reusing parts of the genotype but

that these reused symbols were not contributing to the �nal design (parts of the genotype

that do not contribute to the phenotype are known as bloat [121]). Comparing the curves of

the non-generative representation in both graphs shows a strong correlation between length

of the genotype and number of parts in a design at a ratio of approximately four commands

to one part. This ratio matches that of the construction language, in which two of the eight

commands (forward and back) create a part. The curve with the generative representation's

assembly procedure also has a similar ratio between length and number of parts suggesting

that the reuse of the genotype was useful in that it resulted in the creation of parts.

5.1.3 Summary of Results for the Table Design Problem

In this section it was shown that evolutionary search found better designs with the generative

representation than with the non-generative representation. Averaging the best �tness found
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from �fty trials gives a score of 1826158 for the non-generative representation and 4938144

for the generative representation. In addition, with the generative representation, symbols

in the genotype were used 16.1 times on average in creating assembly procedures.

5.2 Parity Solving Neural Networks

The second class of design problems used neural networks to solve the odd-n-parity function.

The odd-n-parity function returns true if the number of true inputs is odd and returns false

otherwise. This function is di�cult because the correct output changes for every change

of an input value. In addition, the even/odd-n-parity functions have become a standard

benchmark function in genetic programming and past experiments have shown that GP

does not solve the 5-parity (or higher) problem without automatically de�ned functions (a

form of abstraction) [81].

Here recurrent neural networks were evolved to solve the odd-7-parity function. Input

values were 1.0 for true and -1.0 for false. Networks were updated four times and then

the value of output neuron was examined to determine the parity value calculated for that

input. If the absolute value of the output neuron was > 0.9, the output of the network was

taken as true/false. If the absolute value of the output neuron was < 0.9, the network

was iteratively updated until its output value was > 0.9 or < −0.9, for a maximum of six

updates. The network received a score of 2.0 for returning the correct parity value and

a score of -1 for an incorrect answer. If the absolute value of the output neuron was less

than 0.9 after all network updates, the network received a score of 1.0 if the value of the

output neuron was positive and the parity was true or if the value of the output neuron was

negative and the parity was false and no penalty was given for having an incorrect value

in this case. The �tness value of a network was the sum of its scores on all possible inputs.
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5.2.1 Fitness Comparison for 7-Parity Networks

The graph in �gure 5.9 contains a comparison of the �tness of the best network evolved

with the non-generative representation against the best network evolved with the generative

representation, averaged over �fty trials. After 500 generations, the average �tness with the

non-generative representation was approximately 190 and the average �tness with genera-

tive representation was approximately 230. For comparison, random guessing (both for all

outputs less than 0.9 and for all outputs greater than 0.9) averages a score of 64, and the

maximum score is 256.
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Figure 5.9: Fitness comparison between the non-generative and generative representations
on evolving 7-parity networks.

Of the �fty runs with each representation, �ve runs with the non-generative representa-

tion and twelve runs with the generative representation produced networks which correctly

calculated the 7-parity problem. The �ve correct networks with the non-generative rep-

resentation are shown in �gure 5.10 and the twelve correct networks with the generative
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Figure 5.10: The �ve correct parity networks evolved with the non-generative representation.
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Figure 5.11: The �rst six correct parity networks evolved with the generative representation.
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Figure 5.12: The second six correct parity networks evolved with the generative representa-
tion.
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representation are shown in �gures 5.11 and 5.12. Evolution with the generative representa-

tion found both the smallest and the largest correct networks. Because the evolved networks

contain few parts, it is di�cult to �nd much higher-order structure in the evolved networks.

5.2.2 Reuse for the 7-Parity Networks
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Figure 5.13: Graph of (a) length of the genotypes, and assembly procedure produced by
the generative representation, against generation; and (b) graph of number of parts against
generation.

The graph in �gure 5.13.a plots the average length of the genotypes for both the non-

generative and generative representations as well as plotting the average length of the as-

sembly procedure produced by the generative representation. From this graph it can be seen

that with the generative representation, data elements in the encoding of a parity network

are used approximately one and a half times, on average, in creating an assembly procedure.

5.2.3 Summary of Results for the Parity Networks

The results of evolving networks to calculate parity are summarized in table 5.1. This table

shows that the evolutionary algorithm was more likely to �nd correct networks, in fewer

generations, with the generative representation than with the non-generative representa-

tion. This table also shows that the generative representation was using each symbol in the

genotype 1.6 times, on average, in producing assembly procedures. Of the four classes of
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Table 5.1: Summary of results for 7-parity networks.

Summary of results Non-Generative Generative
Average �nal best �tness 193 228
Percentage of runs which found solution. 10% 24%
Average generation solution was found (of runs that
found a solution).

173 79

Average reuse of the genotype (�nal generation) n.a. 1.6

designs this is the lowest degree of reuse and is likely because correct solutions did not need

to be large (see �gures 5.10, 5.11 and 5.12).

5.3 Oscillator Controlled Robots

The third class of design substrates on which the non-generative and generative represen-

tations were compared was that of designing robots in a simulated, three-dimensional en-

vironment. Using this design substrate the goal was to produce robots that moved across

the ground as fast as possible. Fitness was a function of the distance moved by the robot's

center of mass on a �at surface. In order to discourage sliding, �tness was reduced by the

distance that points of the robot's body were dragged along the ground. Finally, a design

was given zero �tness if it had a sequence of four or more rods in which none of the rods

was part of a closed loop with other rods. This constraint was intended to keep the system

from producing spindly robots which would not function well in reality.2 The non-generative

representation was implemented as an L-system with one production rule, no arguments,

one condition-successor pair whose condition always succeeds, and without the repeat op-

erator or the ability to call production rules. The maximum length of the production body

was set to 10,000 commands, allowing assembly procedures of up to 10,000 commands to be

evolved. The generative representation used an L-system with �fteen production rules, three

condition-successor pairs, and two parameters for each production rule. For the generative
2A di�erent approach would be to put a limit on the maximum torque applied on a connection, but this

would require a simulator with more detailed physics then the one used here.
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representation, the maximum length of production body was set to �fteen commands and

the maximum allowed length of an unraveled generative representation was set to 10,000

commands � the same length as with the non-generative representation. The evolutionary

algorithm used a population of 100 individuals and was run for 500 generations and results

are the average over ten trials.

5.3.1 Evolved Oscillator-Controlled Robots and Fitness Comparison
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Figure 5.14: Performance comparison between the non-generative and generative represen-
tations on evolving robots with oscillator networks for controllers.

The graph in �gure 5.14 plots the �tness of the best individual in the population, averaged

over ten trials, for both the non-generative and generative representations. With the non-

generative representation, the average �tness increased at a relatively constant rate from 0

to approximately 500. Using the generative representation, best �tness increased rapidly for
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the �rst 100 generations, then slowed to a rate similar to the non-generative representation,

and reached an average �tness value of just over 1500.

Evolutionary runs were similar in many ways. The �rst individuals started with a few

rods and joints that would slowly slide on the ground. Robots produced from runs using

the non-generative representation would improve upon their sliding motion over the course

of the evolutionary run. The two main forms of locomotion found were using one, or more,

appendages to push along or having two main body parts connected by a sequence of rods

that twisted in such a way that �rst one half of the robot would rotate forward, then the

other. The six fastest robots evolved with the non-generative representation are �gure 5.15.

The two fastest are �gure 5.15.a (�tness 1188 with 49 rods and moves by twisting) and

�gure 5.15.b (�tness 1000 with 31 rods which moves by pushing). The robot in �gure 5.15.c

is an example of one that uses its appendages to roll over. Almost half the robots had only

a handful of rods, such as the robot in �gure 5.15.f, and these designs had the lowest �tness.

Genobots evolved with the generative representation not only had higher average �tness,

but tended to move in a more continuous manner. The six fastest evolved genobots are in

�gure 5.16. Of these, the two fastest are the genobot in �gure 5.16.a, whose segments are

shaped like a coil and it moves by rolling sideways with �tness of 3604 and 325 rods, and

the genobot in �gure 5.16.b, a sequence of interlocking X's that rolls along with �tness

2754 and 268 rods. Not all evolved genobots showed a reuse of assemblies of components,

as demonstrated by the ones in �gure 5.16.d and f. An example of the movement cycle

of a robot produced with the generative representation is in �gure 5.17. This genobot,

constructed from 80 rods with a �tness of 686, moves by passing a loop from back to front.

In general, genobots evolved using the generative representation increased their speed by

repeating rolling segments to smoothen out their gaits, and increasing the size of these

segments/appendages to increase the distance moved in each oscillation.

Additional runs with the non-generative encoding to evolve both oscillator and neural-

network controlled robots failed to yield designs more interesting than those in �gures 5.15

and 5.21. In contrast, additional runs with the generative representation produced a variety
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: The best six oscillator controlled robots evolved using the non-generative rep-
resentation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: The best six oscillator controlled genobots evolved using the generative repre-
sentation.
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(a) (b)

(c) (d)

Figure 5.17: Part of the locomotion cycle of an oscillator-controlled genobot.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.18: A variety of evolved 3D oscillator robots.
These consist of: a, a rolling genobot with 33 bars; b, a bi-connected rolling chain with 59
bars; c, a sequence of rolling rectangles with 169 bars; d, an undulating serpent with 339
bars; e, a 5-segmented inch-worm with 414 bars; f , a �ipping genobot with 99 bars; g, an
asymmetric rolling genobot with 306 bars; h, a coiling snake-like genobot with 342 bars; and
i, a four-legged walking genobot with 629 bars.
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of genobots with di�erent styles of locomotion. The most common form of movement for

evolved oscillator-controlled genobots was to roll along sideways, as done by the chains in

�gures 5.18.a, 5.18.b, 5.18.c and 5.18.g. The creature in 5.18.d moves like an undulating sea-

serpent and, in a similar way, the creature in �gure 5.18.e moves like an inch-worm. Another

common form of locomotion, similar to rolling, is the �ipping of the creature in �gure 5.18.f.

Instead of performing a continuous rotation of its body, this creature repeatedly moves its

center of mass outside its contact points and falls over. Two of the larger creatures that

evolved are the one in �gure 5.18.h, which moves by pushing a coil from front to back and

then re-creating the coil at its front, and the creature in �gure 5.18.i which uses four legs in

an awkward walk.

5.3.2 Reuse with Oscillator-Controlled Robots

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500

le
ng

th

generation

generative - L-sys
generative - assembly proc.

non-generative

0

25

50

75

100

125

150

0 100 200 300 400 500

nu
m

be
r 

of
 p

ar
ts

generation

generative
non-generative

(a) (b)

Figure 5.19: Graph of (a) length of the genotypes, and command string produced by the
generative representation, against generation, and (b) graph of number of parts against
generation.

The reuse of parts by the generative representation is shown in the graphs in �gure 5.19.

This graph contains plots of the average length of the most �t genotype for both representa-

tions as well as the average length of the assembly procedure produced from the generative

representation. These plots show that with the generative representation the genotype in-

creased from 100 symbols to 220 and its assembly procedure increased from 450 symbols to
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3000 symbols � a change in symbol reuse from 4.5 to 13.6. Comparing the average number

of parts in designs of both representation is one way of determining whether this reuse of

genotype was bene�cial in the �nal design, or just a form of bloat. The graph in �gure 5.19.b

plots the average number of parts for the best designs with the two representations. Compar-

ing the average number of parts with the average length of the assembly procedure for both

representations shows that at generation 500, there were approximately 17 commands/part

with the non-generative representation's assembly procedures, 1.7 commands/part with the

generative representation and 23 commands/part with the generative representation's as-

sembly procedure. While the non-generative representation had a more e�cient ratio of

assembly-procedure to number-of-parts, the generative representation is more e�cient by

an order of magnitude in genotype-length:number-of-parts.

5.3.3 Summary of Results for Oscillator-Controlled Robots

In summary, better robots were evolved using the generative representation than with the

non-generative representation. Averaged over ten trials, the best �tness found with the

non-generative representation was 471 and the best �tness found with the generative repre-

sentation was 1533. Also, designs encoded with the generative representation used symbols

12.4 times, on average, in translating from the genotype to the assembly procedure.

5.4 Neural Network Controlled Robots

This fourth design substrate combines the evolution of neural networks with the evolution

of robot morphology for the task of locomotion. The �tness function was the same as that

used for the oscillator-controlled robots and is described in section 5.3. The non-generative

representation was implemented as an L-system with one production rule, no arguments, one

condition-successor pair whose condition always succeeds, and without the repeat operator

or the ability to call production rules. The maximum length of the production body was

set to 10,000 commands, allowing assembly procedures of up to 10,000 commands to be
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evolved. The generative representation used an L-system with �fteen production rules, two

condition-successor pairs, and two parameters for each production rule. For the generative

representation, the maximum length of production body was set to �fteen commands and

the maximum allowed length of an unraveled generative representation was set to 10,000

commands � the same length as with the non-generative representation. Implementing the

non-generative representation as a degenerate case of the generative representation allowed

the evolutionary design system to use the same variation operators on both representations

so that the only di�erence between the two systems was the representation. All results in

this section are from the same set of twenty runs, ten using the non-generative representation

and ten with the generative representation.

5.4.1 Evolved Neural Network-Controlled Robots and Fitness Compari-
son

The �rst graph, �gure 5.20, contains plots of the best �tness (averaged over ten trials)

of the best individuals evolved with the non-generative representation and the generative

representation. After ten generations the generative representation achieved a higher average

�tness than runs with the non-generative representation did after 250 generations and the

�nal genobots evolved with the generative representation were more than ten times faster,

on average, than robots evolved with the non-generative representation.

Figure 5.21 shows the six best individuals evolved with the non-generative representation

and �gure 5.22 shows the six best genobots evolved with the generative representation. From

the images it can be seen that the robots evolved with the non-generative representation are

irregular, and have few components, whereas the robots evolved with the generative repre-

sentation are more regular and, in some cases, have two or more levels of reused assemblies

of components.

As with oscillator-controlled robots, further runs with the generative representation pro-

duced robots with di�erent styles of locomotion but failed to produce new varieties of robots

with the non-generative representation. The images in �gure 5.23 are examples of other
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Figure 5.20: Performance comparison between the non-generative representation and the
generative representation on evolving robots with neural networks for controllers.

robots evolved with the generative representation in which there was no constraint requiring

cycles on limbs longer than four rods. The robot in �gure 5.23.a is connected almost entirely

of actuated joints. It moves by alternating between pulling all its limbs in tight to its body

and extending them while twisting its torso. A kind of wheel was produced in one run,

shown by the robot in �gure 5.23.b. It moves by using its tail to continually turn its body

over and over. The robot in �gure 5.23.c is similar to early versions of the undulating serpent

of �gure 5.18.d with articulated joints between body segments for a kind of inchworm-like

motion. Finally, the robot in �gure 5.23.d is another example of a rolling chain of segments

which was commonly evolved for both oscillator and neural-network controlled robots.

100



(a) (b)

(c) (d)

(e) (f)

Figure 5.21: The best six neural-network controlled robots evolved with the non-generative
representation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: The best six neural-network controlled genobots evolved with the generative
representation.
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(a) (b)

(c) (d)

Figure 5.23: Other genobots evolved using the generative representation on runs with no
constraints on limb lengths.
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Figure 5.24: Graph of (a) length of the genotypes, and command string produced by the
generative representation, against generation, and (b) graph of number of parts against
generation.
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5.4.2 Reuse for the Network-Controlled Robots

In the introduction it was argued that one advantage of a generative representation is its

ability to better search large design spaces through reuse of elements in an encoded design.

The graph in �gure 5.24.a shows, for each generation, the average length of the genotype for

both representations, and the length of the assembly procedure produced by the generative

representation. In the initial populations that used the generative representation the average

length of the genotype was 126 symbols and the average length of the generated assembly

procedure was 534 symbols. This means that on average each symbol in a genotype was being

used 4.2 times in creating the assembly procedure. After 250 generations, this evolved to an

average length of the genotype of 208 symbols and an average length of the resulting assembly

procedure of 2387 symbols, which is an average reuse of 11.5. The average number of parts

(rods only) used in a design is plotted in the graph in �gure 5.24.b. As the genotype sizes

for both non-generative and generative representations are about the same, the increased

number of parts used in designs constructed from the generative representation suggests

that the multiple expression of genotype produced a reuse of parts. Further support comes

from the images in �gures 5.23.c-h, which show that designs evolved with the generative

representation have the same assemblies of parts occurring multiple times in a genobot.

In addition to reuse of components in a genobot's morphology, the networks constructed

from the generative representation also contain reuse of parts. The neural network controller

shown in �gure 5.25 is the controller for the genobot in �gure 5.23.h, and it shows a two-layer

hierarchy of reuse. First, the two-node subnetwork of a sigmoid unit, with a link to itself and

which is connected to an output unit, is repeated multiple times. Second, a link connecting

every second one of these subnetworks shows that higher-level assembly has been created on

top of the �rst. As well as demonstrating reuse of components, its linear sequence of outputs

also corresponds to the linear sequence of joints in the genobot's morphology suggesting

that the dependency between the genobot's controller and morphology are captured in the

encoded robot design.
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Figure 5.25: Evolved neural network controller for the genobot in �gure 5.23.d.

105



5.4.3 Summary of Results for the Neural Network-Controlled Robots

In this section it was shown that better neural-network controlled robots were evolved us-

ing the generative representation than with the non-generative representation. Taking the

average over ten trials of the best individual found with each representations gives a �tness

of 157 with the non-generative representation and 2609 with the generative representation.

Also, with the generative representation, symbols were reused 11.5 times, on average, in

translating from the genotype to the assembly procedure.

5.5 From Design to Implementation

Previous work has shown the successful transfer from design to reality of static objects [48]

and actuated robots [88]. Similarly, designs produced with GENRE have also been success-

fully transferred to the real world. Automated manufacture of evolved table designs was

achieved by use of rapid-prototyping equipment. Evolved designs were saved as an stl �le, a

format for describing three-dimensional structures, and this �le was sent to a rapid prototyp-

ing machine for three-dimensional printing, �gure 5.26. Genobots were initially constructed

using the basic parts shown in �gure 4.4 and then assembled by hand, �gure 5.27.a and b.

More recently, genobots are built using a rapid prototyping machine in a method similar to

Lipson and Pollack's GOLEM project [88], �gure 5.27.c. Constructed genobots behaved in

reality similar to how they performed in simulation.

5.6 Summary of Results

This chapter presented the results of evolving designs on four di�erent substrates with

both a non-generative and a generative representation. On all four design problems the

evolutionary design system achieved better designs with the generative representation than

with the non-generative representation. These results supported the argument of chapter 1

that on complex design problems the ability to reuse parts of an encoded design would

improve the performance of a search algorithm. With the generative representation, average
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5.26: Evolved tables shown both in simulation (left) and reality (right).
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5.27: Evolved robots shown both in simulation (left) and reality (right).
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reuse of elements of encoded designs was 16.1 on table designs, 1.6 on parity networks,

12.4 on oscillator controlled robots and 11.5 on neural network controlled robots. Finally,

real-world implementations of designs produced with this system were shown.
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Chapter 6

Discussion

The central claim of this dissertation is that using generative representations improves the

evolvability of evolved designs and also increases the size of the design space explored with

the evolutionary algorithm. The two advantages of superior evolvability of designs encoded

with a generative representations and improved ability to explore large design spaces are

related to each other. If designs created with the automated design system are more evolvable

in the types of variation that are successful, this enables the search algorithm to explore a

wider range of designs. This can be intuitively understood by looking at some examples of

designs evolved with a generative representation.

An advantage of the design encodings that are found with a generative representation is

in the changes that can be made to this encoding that can not be made to designs encoded

with a non-generative representation. Using the table from appendix A, �gure 6.1 contains

examples of di�erent tables that can be produced with a single change to the encoded design.

One change to the encoding of the table in �gure 6.1.a can produce a table with: three legs

instead of four by changing the parameter in the block replication command in P0, (b); a

narrower frame, by changing symbols in either productions P17 or P18, (c); shorter legs,

by changing symbols in the �rst successor of P8, (d); a surface with less voxels, by changing

symbols in P6 or P8, (e); or more voxels on the surface, again by changing symbols in P6

or P8, (f). The images in �gure 6.2 are another example which shows the bene�ts of reuse
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(a) Original. (b) Three legs/corners.

(c) Narrower. (d) Shorter.

(e) Fewer surface voxels. (f) More surface voxels.

Figure 6.1: Mutations of a table.
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(a)

(b) (c)

Figure 6.2: Mutations of a genobot: (a), the genobot from �gure 5.22.b; (b), a change to a
low-level component of parts results in all occurrences of this part to have the change; (c), a
single change to the genotype changes the number of high-level components in the genobot
from four to six.
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through variations applied to the individual in �gure 5.23.d. Changing the genotype to add

rods to an assembly of parts results in the change to all occurrences of that part in the

design, �gure 6.2.b, and a single change to the genotype can cause the addition/subtraction

of a large number of parts, �gure 6.2.c. With a non-generative representation, these changes

would require the simultaneous changes of multiple symbols in the encoding. Some of these

changes must be done simultaneously for the resulting design to be viable � changing the

height of only one leg of the table can result in a signi�cant loss of �tness � and so these

changes are not evolvable with a non-generative representation. Others, such as the number

of voxels on the surface, are viable with a series of single-voxel changes. Yet, in the general

case this could result in a signi�cantly slower search speed in comparison with a single change

to a table encoded with a generative representation.

That the evolutionary design system is taking advantage of the ability to make coordi-

nated changes with a generative representation is demonstrated by individuals taken from

di�erent generations of the evolutionary process. The sequence of images in �gure 6.3,

which are of the best individual in the population taken from di�erent generations, show

two changes occurring. First, the rectangle that forms the body of the genobot goes from

two-by-two (�gure 6.3.a), to three-by-three (�gure 6.3.b), to two-by-four (�gure 6.3.c), before

settling on two-by-three (�gures 6.3.d-f). These changes are possible with a single change

on a generative representation but cannot be done with a single change on a non-generative

representation. The second change is the evolution of the genobot's legs. That all four legs

are the same in all six images strongly suggests that the same module in the encoding is

being used to create them. As with the body, changing all four legs simultaneously can be

done easily with the generative representation by changing the one module that constructs

them, but would require simultaneously making the same change to all four occurrences

of the leg assembly procedure in the non-generative representation. Figure 6.4 contains a

sequence of images from the evolution of a neural-network controlled genobot. Being able to

repeat the main body allowed search to move from the design in �gure 6.4.b to �gure 6.4.c to

the design in �gure 6.4.d. These changes to a design can be done with a few changes to the
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(a) Fitness: 348. (b) Fitness: 780.

(c) Fitness: 1168. (d) Fitness: 1450.

(e) Fitness: 2168. (f) Fitness: 2192.

Figure 6.3: Evolution of a four-legged walking genobot.
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(a) Fitness: 60. (b) Fitness: 128.

(c) Fitness: 256. (d) Fitness: 258.

Figure 6.4: Evolution of a rolling genobot.
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generative representation, yet would require the coordinated changes of a greater number of

symbols with a non-generative representation.

The above examples illustrate how reuse in design encodings can result in more evolvable

design encodings that improve the ability of a search algorithm to explore large design

spaces. The following two sections compare both the evolvability of designs evolved with

the generative representation against those evolved with the non-generative representation

and also compare the size of the search spaces explored by the evolutionary algorithm with

the two di�erent representations.

6.1 Evolvability

Reusing elements of an encoded design to reuse parts in the actual design with a genera-

tive representation makes certain types of design changes easier than with a non-generative

representation. With a non-generative representation, as the number of dependencies in a

design increase the likelihood of the right change happening simultaneously to all the de-

pendent parts of a design becomes increasingly unlikely. Changing the height of a table,

for example, requires changing each occurrence of a table leg in the genotype. In contrast,

if a generative representation uses a single module to construct a table leg, changing the

height of the table requires only one change in the leg-building module. While recombina-

tion can duplicate assemblies of parts in a non-generative representation, a later application

of variation would only change one instance of this assembly. By capturing dependencies

through shared parameters and assemblies of encoded elements, coordinated changes in the

expressed design can be realized through a single change in the generative design representa-

tion. This section contains examples from the di�erent design domains which show that the

generative representation captured design dependencies in its structure, thereby improving

the evolvability of an encoded design.

To determine if design encodings evolved with the generative representation incorporated

useful bias of the problem into their structure, the evolvability of encodings evolved with
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the two representations is compared. Measuring the evolvability of a representation depends

on the meaning of evolvability. One meaning of evolvability is the ability of a genotype to

produce o�spring of higher �tness [7] [134]. Using this meaning, evolvability can be measured

by plotting the number of o�spring that fall at a given �tness di�erential from their parents.

Another meaning of evolvability is the degree to which changes in the genotype can result

in new, and useful, phenotypes [29], or the ability for the representation to facilitate large

changes in the phenotype. This second meaning of evolvability can be measured by plotting

the phenotypic distance against the �tness di�erential for o�spring.

To measure evolvability, two metrics were used to compare the di�erence between a

parent and child's assembly procedures. One metric used is the edit distance between two

strings [112]. Because calculating the edit distance is computationally expensive this metric

is used for only a single experiment in which evolved assembly procedures averaged less

than a thousand commands. A second metric, called command di�erence, is used as a

less computationally expensive estimate of distance between two assembly procedures. If

the assembly procedures are the same length, the command di�erence returns the number

of symbols that are di�erent for each index (analogous to the Hamming distance between

binary strings). The command di�erence between strings of di�erent lengths consists of

counting the number of occurrences of a symbol for each symbol type and then summing

the absolute di�erence between these values. For example, the command di�erence between

abcabc and cbacba is four and the command di�erence between abcabc and cbacb is one.

The rest of this section compares the evolvability of designs produced with the generative

representation against those produced with the non-generative representation. Evolvability

of the two representations, both the ability to produce o�spring of higher �tness and the

ability to make changes to a design, are examined on all four design substrates. In addition,

with the 7-parity problem, plots using command di�erence and edit distance are compared

and it is shown that using command di�erence is a near approximation of edit distance.
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Figure 6.5: Tables: plot of amount of change in genotype from parent to child versus change
in �tness (one out of every four data points) for cases with positive change.
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6.1.1 Evolvability of Table Designs

To determine if the generative representation was incorporating useful bias of the design

problem into its structure, the �tness di�erence between a parent and child is plotted along

with the command di�erence between their assembly procedures. The graphs in �gure 6.5 are

scatter plots of the command di�erence between parent and child's assembly plans against

their change in �tness. Because each of these data �les contain over fourteen million data

points, and most changes result in a loss of �tness, these graphs plot only one out of every

four points and only those points in which the change in �tness is greater than, or equal

to, one. These graphs show that large changes in the assembly procedure were more likely

to be successful with the generative representation than with the non-generative represen-

tation, and improvements tended to have a larger increase in �tness with the generative

representation.

Next, the success rate of the mutation operator on the two di�erent representations

is compared to determine if the generative representation produced design encodings that

were more conducive to evolution. The graphs in �gure 6.6 plot the number of o�spring

that fall at a given �tness di�erential from the parent design. These graphs show that the

overwhelming majority of mutations to a design produced little or no change in �tness.

While most of the remaining mutations produced a negative change in �tness with both

representations, there are more positive changes to �tness with the generative representation,

especially large positive changes. A plot of the success rate under mutation (a child has

higher �tness than its parent) is shown in the graphs in �gure 6.7. For changes of less

than 400 symbols, the success rate was higher with the non-generative representation than

with the generative representation. A possible explanation is that with the non-generative

representation it is easier to make small changes that add voxels to the table-top than

with the generative representation. Changes of more then 400 symbols tended to be more

successful on the generative representation, with the non-generative representation having

no successful mutations of more then 1000 symbols whereas 7425 was the largest command

di�erence for which an improvement was made with the generative representation. These two
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Figure 6.6: Table designs: regular and log graphs of the number of o�spring that had a
given �tness di�erential from their parent with: the non-generative representation, (a) and
(c); and the generative representation, (b) and (d).
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Figure 6.7: Tables: probability of improvement (child is more �t than parent) comparison
between non-generative and generative representations, for ranges 1-50, 51-100, 101-150, ...
1951-2000.

sets of graphs show that encodings with the generative representation were more evolvable

than the non-generative representation both in that positive changes to �tness are more

likely and large changes to the design were more likely to result in a higher �tness.

6.1.2 Evolvability of Parity Networks

Graphs plotting the change in �tness against assembly procedure command-di�erence/edit-

distance between a parent and its child are shown in �gure 6.8. These graphs show that

mutations on designs encoded with the non-generative representation produced less improve-

ments in �tness than did mutations on designs encoded with the generative representation.

This provides evidence that over the course of evolution, designs encoded with the generative

representation captured useful properties of the design problem into their structure.

That evolutionary search with the generative representation produced more evolvable

design encodings than with the non-generative representation is shown by the graphs in

�gures 6.9 and 6.10. The graphs in �gure 6.9 plot the number of o�spring at given �tness

di�erential ranges from their parents. These graphs show that there were more positive

changes in �tness with the generative representation for all ranges and the maximum positive

�tness change that occurred with the generative representation was approximately twice
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Figure 6.8: 7-Parity: plot of command-di�erences/edit-distances between parent and child's
assembly procedures versus change in �tness (positive improvements only).
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Figure 6.9: 7-Parity: regular and log graphs of the number of o�spring that had a given
�tness di�erential from their parent with: the non-generative representation, (a) and (c);
and the generative representation, (b) and (d).
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Figure 6.10: 7-Parity: probability of improvement (child is more �t than parent) comparison
between non-generative and generative representations (both command di�erence and edit
distance) for ranges 1-10, 21-30, 31-40, ... 191-200.
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that with the non-generative representation. The graphs in �gure 6.10 are plots of the

probability of success of mutation for di�erent ranges of command-di�erence/edit-distance

between a parent and child's assembly procedures. These graphs show that mutations

that produced large changes in an individual's assembly procedure were more likely to be

successful (have a higher �tness than the parent individual) on designs encoded with a

generative representation than on designs encoded with a non-generative representation.

Both sets of graphs show that the generative representation was more evolvable, suggesting

that over the course of evolutionary search the generative representation captured useful

properties of the design problem.

Since assembly procedures evolved for this class of design problems averaged less than

250 commands, edit distance was used to compare a parent and child's assembly procedures

in addition to the command di�erence used on all design substrates. Comparing graphs

of the same individuals using the di�erent metrics allows for a comparison of the metrics

themselves. The graphs in �gures 6.8 and 6.10 have similar characteristics suggesting that

plots using edit distance would be similar to those using command di�erence on the other

design problems.

6.1.3 Evolvability of Oscillator-controlled Robot Designs

In chapter 1 it was argued that a generative representation would be more conducive to

large variations on the design than a non-generative representation because of its ability

to capture useful bias into its structure. The graphs in �gure 6.11 are scatter plots of the

command di�erence between a parent and child's assembly procedures against their change

in �tness. From the graphs in �gures 6.11.a and b it can be seen that mutation was not

generally bene�cial on the non-generative representation, and only produced designs with

higher �tness when small changes were made. Comparing the plots in �gures 6.11.c and d

shows that mutation was more e�ective on the generative representation itself than on the

assembly procedure produced by the generative representation. This means that it is in the

structure of the encoding of the generative representation that useful bias was captured and
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Figure 6.11: Oscillator robots: plot of amount of change in assembly procedures from parent
to child versus change in �tness.
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Figure 6.12: Oscillator-controlled robots: regular and log graphs of the number of o�spring
that had a given �tness di�erential from their parent with: the non-generative representa-
tion, (a) and (c); and the generative representation, (b) and (d).

not just the in sequence of symbols it produced.

Finally, the graphs in �gures 6.12 and 6.13 show the evolvability of the two representa-

tions. The graphs in �gure 6.12 plot the number of o�spring that had a given �tness di�er-

ential from their parent. These graphs show that a larger number of o�spring had higher

�tness than their parent with the generative representation than with the non-generative

representation. They also show that there was a greater range in �tness di�erentials with the

generative representation than with the non-generative representation. Finally, the graphs in

�gure 6.13 show the rate of success of mutations (child has higher �tness than its parent) for

di�erent distances between parent and child assembly procedures. With the non-generative
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Figure 6.13: Oscillator-controlled robots: probability of improvement (child is more �t than
parent) comparison between the non-generative and generative representations, for ranges
1-50, 51-100, 101-150, ... 951-1000.

representation, the success rate quickly fell to 0 for changes of more than 150 symbols in the

assembly procedure. With the generative representation, the rate of success also decreased

as the distance between a parent and child assembly procedures increased, but this stayed

above zero well past a di�erence of 1000 symbols (at which point the rate of success was 8%).

These two sets of graphs both show that the generative representation had more evolvable

individuals than the non-generative representation.

6.1.4 Evolvability of Neural-network-controlled Robot Designs

The second part of our argument for a generative representation is that, through evolution,

design dependencies become embedded in a design encoded with a generative representation,

resulting in better performance of the variation operators. To compare the performance

in variation operators between the two representations we compare the change in �tness

between a parent and its child (from mutation) and plot it against the di�erence between

parent and child's assembly procedures. For the non-generative representation, the assembly

procedure is the same as the genotype, for the generative representation, the assembly

procedure is the last string produced by the L-system. In the case where the assembly

procedures are the same length, the command di�erence between two assembly procedures
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Figure 6.14: Plot of amount of change in genotype from parent to child against change in
�tness.
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is the number of locations for which the parent and child have di�erent symbols. When

strings are di�erent lengths, the number of occurrences of each symbol is counted and the

command di�erence is the sum of the di�erences between these values.

Figure 6.14 shows four di�erent change-in-�tness against command-di�erence plots. The

�rst graph, �gure 6.14.a, is a plot of change-in-�tness against command di�erence for a

single mutation operator applied to a non-generative representation. Most mutations were

close to the parent, and most successful mutations were less than 10 commands apart.

As o�spring under the generative representation will tend to be further from their parent

(because of reuse of the genotype), we also plot change in �tness against command di�erence

for the non-generative representation with 1-6 mutations (chosen with uniform probability)

applied. From the graphs it can be seen that mutations on the non-generative representation

were usually only successful when the change in command di�erence between assembly

procedures was small (less than 10), and even then improvements were not large. The graph

in �gure 6.14.c is a plot change-in-�tness against command di�erence between assembly

procedures and shows that with the generative representation there was a larger variation

in assembly procedure distance between a parent and its child than with the non-generative

representation. This graph also shows o�spring were more likely to have higher �tness than

their parents with the generative representation than with the non-generative representation.

To determine if this improved performance under variation was only a result of the types

of strings generated by the generative representation we also applied one to six mutations to

the assembly procedure produced by the generative representation. The plot of �gure 6.14.d

shows that variation on the generative representation's assembly procedure was not as suc-

cessful as on the generative representation itself, suggesting that the structure with the

generative representation had captured some useful bias of the design problem over the

course of evolution.

Next the evolvability of the two representations are compared. The graphs in �gure 6.15

are plots of the distribution of �tness di�erentials between a parent and its child for both

representations. Comparing the two distributions shows that more o�spring had a higher
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Figure 6.15: Neural network controlled robots: regular and log graphs of the number of
o�spring that had a given �tness di�erential from their parent with: the non-generative
representation, (a) and (c); and the generative representation, (b) and (d).
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�tness than their parent with the generative representation than with the non-generative

representation. These graphs also show that the distribution of o�spring extended out be-

yond a positive change of 3000 in �tness with generative representation but did not extend

beyond 700 with the non-generative representation. This shows that evolution with the gen-

erative representation create more evolvable design encodings than with the non-generative

representation for this design problem.
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Figure 6.16: Neural network controlled robots: probability of improvement (child is more �t
than parent) comparison between di�erent representations, for ranges 1-50, 51-100, 101-150,
... 951-1000.

As a way of normalizing for the higher average �tness achieved with the generative rep-

resentation, we next show the success rate (a child's �tness is greater than its parent) for the

mutation operator for di�erent command di�erences between parent and child, �gure 6.16.

Again we include a comparison with 1-6 mutations applied to the non-generative representa-

tion as well as 1-6 mutations applied to the assembly procedure produced by the generative

representation. With the non-generative representation, the success rate of the mutation

operator quickly dropped to zero as the di�erence between parent and child's assembly

procedures increased. In contrast, the success rate of mutation more gracefully decayed

with command di�erence when applied to the generative representation � even when parent

and child were 500 construction symbols apart the success rate of mutation was 10%. The

higher success rate of mutation, especially with larger di�erences in assembly procedures,
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and greater average increase in �tness with the generative representation provides strong

evidence that the generative representation captured meaningful bias of the design problem.

6.1.5 Summary

Table 6.1: Average �tness change of successful mutations.

Substrate Non-Generative Generative
Tables 2826 16102
7-parity networks 19 51
Oscillator-controlled robots 10 76
Network-controlled robots 19 178

Table 6.2: Average command di�erence of successful mutations.

Substrate Non-Generative Generative
Tables 3 71
7-parity networks 2.6 22.1
Oscillator-controlled robots 2 46
Network-controlled robots 3 44

In chapter 1 it was argued that on complex design problems a generative representation

would capture structure of the design problem through reuse of elements of the genotype,

thereby improving the evolvability of encoded designs. In this section two de�nitions of

evolvability were given and the evolvability of designs produced with the generative repre-

sentation was compared against designs produced with the non-generative representation.

The �rst type of evolvability is de�ned as the ability for changes to a design to result in

o�spring of higher �tness. Table 6.1 summarizes the comparison between the generative

and non-generative representation for this second type of evolvability and shows that the

average improvement of o�spring was higher with the generative representation than it was

with the non-generative representation. The second type of evolvability is de�ned as the

ability to make large changes to a design. Table 6.2 summarizes the results of measuring
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the this type of evolvability for the two types of design representations and shows that the

average size of a successful design change was larger with the generative representation than

with the non-generative representation. The higher average increase in �tness and the larger

average command di�erence for successful mutations both show that search with the gen-

erative representation produced more evolvable design encodings than the non-generative

representation.

6.2 Searching Large Design Spaces

The second advantage of using a generative representation comes from its superior ability

to explore large design spaces. The graphs in �gure 6.17 are scatter plots of the number

of parts against the �tness with the non-generative and generative representations for each

of the design problems. These graphs show that with the generative representation, the

search algorithm tested designs with a wider range of parts and �tness than with the non-

generative representation. The scatter plots in �gure 6.18 are plots of the size of the encoded

designs against the �tness of the designs. The graphs show that search with the generative

representation typically found better designs with shorter representations than did search

with the non-generative representation.

Even if a representation is better able to encode designs with a large number of parts

and many dependencies this leaves the problem of how to explore an exponentially larger

design space. For example compare the size of search spaces used in searching design spaces

of n parts. With a non-generative encoding the genotype's length is directly proportional to

the number of parts in the artifact, and the search space is some exponential on this length,

kn. If it is assumed that on average each part of the genotype is used twice in constructing

the phenotype (taking into account extra genotype needed to specify how to construct the

phenotype) then the length of a generative encoding for a problem with n parts is n
2 , which

has a search space of size k
n
2 . In fact the results of chapter 5, and presented again in

�gure 6.19, show that with the generative representation the degree of reuse of elements in
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Figure 6.17: Plots of number of parts versus �tness of the best individual from each trial:
(a) and (b) are for tables (plotting one out of every ten points); (c) and (d) are for parity-
solving neural networks; (e) and (f) are for 3D, oscillator controlled robots; and (g) and (h)
are for 3D, neural-network controlled robots.
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Figure 6.18: Plots of genotype length versus �tness of the best individual of each generation
from each trial: (a) and (b), table designs (one out of every ten points); (c) and (d) are for
parity-solving neural networks; (e) and (f), 3D, oscillator controlled robots; and (g) and (h),
3D, neural-network controlled robots.
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Figure 6.19: Graph of length of the genotypes and assembly procedure produced by the
generative representation against generation for: (a) table designs; (b) parity networks; (c)
oscillator controlled robots; and (d) neural-network controlled robots.
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the genotype was sixteen for tables designs, one and a half for parity networks, twelve for

oscillator controlled robots and eleven for neural-network controlled robots.

For this reduction to lead to better scaling in automated design, the inductive bias of

which parts of the design space to leave out and which parts to focus on must be automated

and not performed by the researcher. Since the bodies of the production rules are changed

over the course of evolutionary search, it is the mapping function from encoded design to

artifact that is being optimized. Thus with the generative representation, the inductive bias

is captured over the course of evolution and not programmed by the researcher.

6.3 Summary

In summary, generative representations can capture design dependencies in ways more con-

ducive to evolution than non-generative representations, which results insearch with gen-

erative representations being better able to explore large design spaces than search with a

non-generative representation. The images in �gures 6.1 and 6.2 show how reuse of encoded

design elements resulted in the evolution of design encodings with a meaningful modular-

ization of the design, allowing some large-scale design changes to be made easily. Examples

showing the evolutionary algorithm making large-scale changes to a design are shown in the

images in �gures 6.3 and 6.4. In section 6.1 it was shown that through reuse generative

representations captured dependencies of evolved designs, thereby allowing for more evolv-

able design encodings. Finally, in section 6.2 it was shown that the ability to reuse elements

of the encoded design resulted in the evolutionary algorithm searching a larger area of the

design space than with the non-generative representation.
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Chapter 7

Conclusions

7.1 Summary

This thesis investigated representations for evolutionary design systems. First, the �eld of

programming languages was used to identify properties of design representations as: combi-

nation, iteration, labels to compound elements, and parameterization of these labels. Using

these properties generative representations were de�ned as those representations which allow

for reuse of elements in design encodings through either iteration or abstraction. Next it

was argued that, with the same basic command set, generative representations would have

better scaling properties than non-generative representations through their ability to incor-

porate good bias of the design problem into their structure, better enabling the search of

large design spaces. To support this claim an evolutionary design system, GENRE, and gen-

erative representation were described for evolving tables, neural networks and robots. Using

GENRE, a generative representation was compared to a non-generative representation on

four classes of design problems: tables [59]; recurrent neural networks; oscillator controlled

robots [58] [61] [57]; and neural network controlled robots [60] [62]. The results of these

comparisons showed:

• Better designs were evolved with the generative representation than with the non-

generative representation (�gures 5.1, 5.9, 5.14 and 5.20).
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• Designs encoded with the generative representation had a reuse of parts of the genotype

on average: sixteen times for tables designs, �gure 5.8; one and a half times for parity

networks, �gure 5.13; twelve times for oscillator controlled robots, �gure 5.19; and

eleven times for neural-network controlled robots, �gure 5.24.

• Variation on designs encoded with the generative representation were more evolv-

able than those encoded with the non-generative representation in two ways. First,

changes to design encodings were more likely to improve a design on the generative

representation than on the non-generative representation, and, of those changes that

were improvements, these changes had a larger expected increase in �tness with the

generative representation (�gures 6.6, 6.9, 6.12 and 6.15). Second, large changes to

the artifact (measured by distance between assembly procedures) were more likely to

be successful with the generative representation (�gures 6.7, 6.10, 6.13 and 6.16). In

both cases successful changes to designs encoded with the generative representation

had higher increases in �tness than changes on designs encoded with the non-generative

representation.

• Better evolvability of the generative representation for large changes in the design

shows that the generative representation better enabled search in large design spaces

than the non-generative representation.

• Reuse of genotypic elements of design encodings in conjunction with the superior

evolvability of the generative representation shows that the generative representation

is better capturing design dependencies than is the non-generative representation.

7.2 Future Work

The work of this thesis has opened the door to several directions for future work:

• The resulting assembly procedures produced with GENRE are linear, but the princi-

ples of this design representation apply to di�erent structures. An obvious extension
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(a)

(b)

Figure 7.1: A graphical rendition of: (a), a tree-structured generative representation; and
(b), the tree-structured assembly procedure it produces.
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of this is to go from strings to trees, as is done with cellular encoding and genetic pro-

gramming, such as in �gure 7.1. This would allow evolution of genetic programming

trees for comparison with work in this �eld as well as better enable the construction

of graphs.

• Of the four di�erent properties that design representations were identi�ed as having,

the two representations compared had either all four of these properties or none of

them. Further work could investigate the usefulness of other representations with

di�erent combinations of these properties. For example, one use of parameters and

conditionals is parametric design, in which an individual represents not just one in-

stance of a design but an entire class of designs over some parameter space. Initial work

towards evolving representations for an entire class of objects was demonstrated with

Gruau's cellular encoding in which manually changing a single value in the evolved en-

coding of a network controls the size of the resulting network for solving di�erent sizes

of n-parity problem [51]. By utilizing the starting parameters to the initial production

call, the generative representation described here can describe a parametric class of

objects; the example of section 4.1 shows two instances of designs for a parametric

class of tree-like objects in �gure 4.2.

Figures 7.2 and 7.3 are examples of parameter-controlled designs produced withGENRE.

The four images in �gure 7.2 are four tables produced by the same evolved table en-

coding. The parameters for height and surface/volume were scaled so that there was a

non-direct relationship between the input parameters and the desired property value.

Input values for height were 5.0 and 10.0, for which the desired height values were 20

and 40. Input values for surface/volume were also 5.0 and 10.0, for which the desired

surface areas were 400 and 1600 and desired volumes were 8000 and 64000. The three

networks shown in �gure 7.3 are generated with inputs 3.0, 5.0 and 7.0 to the same

individual and correctly solve the 3/5/7-parity problem of section 5.2.1. An analysis

of this individual (see appendix B) �nds that the generative representation used some
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(a) table(5.0, 5.0) (b) table(10.0, 5.0)

(c) table(5.0, 10.0) (d) table(10.0, 10.0)

Figure 7.2: Four di�erent tables constructed using di�erent parameter values with the same
design encoding.
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e:Input

a:Sigmoid

1.00

f:Input

1.00

g:Input

1.00

b:Output

1.00

6.00

d:Sigmoid

4.00

c:Sigmoid

1.00-11.00 2.25

(a) 3-parity

e:Input

a:Sigmoid
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f:Input

1.00

g:Input

1.00

h:Input

1.00

i:Input

1.00
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1.00 1.00

-11.75

(b) 5-parity

d:Input
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e:Input
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g:Input
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h:Input
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i:Input
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j:Input
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b:Output

1.00

12.25
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4.00
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1.00-15.00 -2.00

(c) 7-parity

Figure 7.3: Networks constructed to solve 3, 5, 7-parity from the same evolved network
encoding.
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sections of the genotype for constructing parts of all three networks and used condi-

tionals so that other sections of the genotype were used for constructing only one of

the networks.

• The generative representation described in this thesis uses a procedural approach of

explicitly constructing designs through an assembly procedure. An alternative to using

explicit commands for constructing a design is to use a representation in which the

encoded design rules interact to construct a design implicitly, such as with cellular

automata and and arti�cial chemistries [31]. A procedural approach has two strengths

which are not readily apparent with non-procedural representations, both of which are

examples of modularity, a principle of good software design [92].

First, an explicit, procedural representation allows for a modularization of construc-

tion rules for di�erent parts of the artifact into di�erent parts of the representation.

This allows for the hierarchical construction of assemblies of parts which, through en-

capsulation, can be transfered from one individual to another as a unit allowing the

variation operator to scale. In addition, this allows for reused components to be du-

plicated in the genotype so that they can be adapted into another task. Both of these

operations would be di�cult with an implicit representation because of the indirect

association between a given element of the genotype and a part in the artifact and the

high interaction between rules in creating a design.

A second advantage with a procedural approach is the decomposition between the

encoding and the construction of a design results in a generic design system. Di�erent

classes of design can be evolved by changing the set of construction commands and

the design builder [110]. For example, in this thesis the same evolutionary algorithm

and generative representation were used for all four design classes. Changing a non-

procedural representation to work on the di�erent design classes of chapter 4 would

have required a redesign of the representation and variation operators because of the

high integration between representation and design.
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• Finally, even though evolutionary algorithms were used as the search algorithm for

optimizing artifact designs, the arguments for the advantages of generative represen-

tations did not depend on the speci�c search algorithm used. Another direction for

future work would be to investigate the advantages of generative representations over

non-generative representations with other search algorithms, such as hill-climbing and

simulated annealing.

The next step in automated design is in producing design representations that can hierar-

chically create and reuse assemblies of parts in ever more powerful ways. As continuing work

expands the range and power of generative representations, while maintaining evolvability,

we expect to see ever more progress toward general purpose evolutionary design systems.
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Appendix A

An Evolved Table

The following L-system is the generative representation for the table in �gure A.1, and also

shown in �gure 6.1.a:

P0 (n1>10.0) :- P11(n0/4.0,2.0) down(1.0) {P17(3.0,n1/2.0) P12(n1+n0,n0+n1)

P3(1.0,n1-n0) }(4.0)

(n1>3.0) :- P11(n0/4.0,2.0) down(1.0) {P17(3.0,n1/2.0) P18(n1+n0,n0+n1)

P3(1.0,n1-n0) }(4.0)

(n1>0.0) :- [P16(2.0,n0+2.0) ]

P2 (n0>5.0) :- P7(n1/2.0,n0+2.0) back(1.0)

(n0>5.0) :- P7(n1/2.0,n0+2.0) back(1.0)

(n0>0.0) :- [left(4.0) P12(3.0,4.0) ]

P3 (n1>2.0) :- P16(4.0,n0-n1) P16(4.0,n0-n1) P16(4.0,n0-2.0) P16(4.0,n0-n1)

(n1>2.0) :- P16(4.0,n0-n1) P16(4.0,n0-n1) P16(4.0,n0-n1) P16(4.0,n0-n1)

(n0>0.0) :- down(1.0) {clockwise(n1) forward(3.0) }(5.0)

P6 (n1>1.0) :- [back(5.0) left(1.0) back(5.0) down(1.0) up(1.0) back(5.0) back(5.0)

back(5.0) ]

(n0>1.0) :- [back(5.0) up(1.0) back(n0) left(1.0) back(n0) down(5.0) up(1.0)

back(5.0) left(n1) back(5.0) down(1.0) ]

(n1>0.0) :- [back(5.0) left(1.0) back(5.0) down(1.0) up(1.0) back(5.0) back(5.0)

back(5.0) ]
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P7 (n0>-1.0) :- [clockwise(1.0) clockwise(1.0) left(1.0) clockwise(1.0) clock-

wise(5.0) right(1.0) clockwise(1.0) ] down(1.0)

(n1>1.0) :- [clockwise(1.0) clockwise(1.0) left(1.0) clockwise(1.0) clock-

wise(5.0) clockwise(1.0) clockwise(1.0) ] down(1.0)

(n0>0.0) :- [clockwise(1.0) left(1.0) ] right(2.0) up(2.0) P18(n1-5.0,n1+4.0)

P8 (n0>0.0) :- P8(n0/4.0,n1+1.0) [back(4.0) back(4.0) P8(n1-2.0,n0-5.0) ]

(n1>-2.0) :- [P8(n0/4.0,n1+1.0) back(5.0) P8(n1-5.0,n0-5.0) back(4.0)

back(4.0) back(4.0) P6(n1-n0,n0+n1) ]

(n0>0.0) :- [back(4.0) P8(n1-2.0,n0-5.0) ] P6(n1-n0,n0+n1)

P9 (n1>3.0) :- P7(3.0-3.0,n0+n1) clockwise(1.0) P8(n1-n0,n1+1.0)

(n1>2.0) :- P7(3.0-3.0,n0+n1) clockwise(1.0) P8(n1-n0,n1+1.0)

(n1>0.0) :- forward(1.0) P16(n1-1.0,n0-n1)

P11 (n1>4.0) :- [P19(4.0,5.0) ]

(n1>-10.0) :- right(1.0)

(n1>0.0) :-

P12 (n1>4.0) :- back(1.0) up(1.0)

(n1>4.0) :- back(1.0) up(1.0)

(n1>0.0) :- counter-clockwise(4.0)

P14 (n1>3.0) :- P11(n1,n0/n1)

(n0>10.0) :- P2(n1/3.0,n1+n0) P9(n1,n0/n1)

(n1>0.0) :- P9(n1,n0/n1)

P16 (n1>22.0) :-

(n1>5.0) :-

(n1>0.0) :- [P19(n0/2.0,n1-n0) back(1.0) forward(3.0) ] clockwise(2.0)

P3(5.0,n1-5.0)

P17 (n1>3.0) :- up(n1) back(2.0) back(4.0) back(n0) back(3.0) back(3.0) back(5.0)

(n1>3.0) :- up(n1) back(4.0) back(2.0) back(2.0) back(2.0) back(3.0) back(5.0)

(n1>0.0) :- up(2.0) back(2.0)
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P18 (n1>3.0) :- back(n1) P14(n1-3.0,3.0) left(1.0) left(1.0) right(1.0) right(1.0)

(n1>3.0) :- back(n1) P14(n1-2.0,3.0) left(1.0) [counter-clockwise(1.0) ]

right(1.0)

(n0>0.0) :- [P13(5.0,n1/4.0) right(1.0) ] right(1.0)

This L-system is started with P0(4, 10) and run for 17 iterations. The images in �g-

ure A.1 show the intermediate stages in the development of a table design. The generative

representation for this table (see appendix A) starts with the command P0(4.0, 10.0) and

goes through 17 iterations of parallel replacement. The �rst iteration produces the string,

P11(1,2) down(1) {P17(3,5) P18(14,14) P3(1,6) }(4), which uses block replication to en-

code the table's four legs. Within this block, the productions P17, P18 and P3 are called

once, and this is the only time they are called. The structure of the base is encoded in pro-

ductions P17 and P18. Reducing the number of voxels created from its back() command, in

these productions reduces the width and depth of the table. P3 calls P16, but all of P16's

conditions fail, and this sequence of productions produces no build commands. From P18

there are calls to P14 then P9 � P14 also calls P2 which then calls P12, but none of these

productions produce bricks. P9 changes the direction of the turtle to build the table legs

with the help of P7, and then the table legs and surface are encoded in productions P6 and

P8, which construct the legs and surface through repeated calls to each other. In both P6

and P8 the parameter values are used to select which production body to use. The height

of the legs is encoded in the �rst successor, for which the condition succeeds both when P8

is initially called and also the �rst time it calls itself. In later calls to P8, the �rst condition

fails and the second condition succeeds resulting in the �rst call to P6, which begins the

sequence of commands for constructing the table's surface. Later evolution changed the

production rules P6 and P8 to,
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stage 5 stage 8

stage 9 stage 12

stage 14 stage 17

Figure A.1: Stages in the development of a table.

152



P6 (n1 > 1.0) → [back(5.0) up(5.0) back(n0) left(1.0) back(5.0) back(5.0) back(5.0)

back(4.0) ]

(n0 > 2.0) → [back(5.0) up(5.0) back(n0) back(5.0) left(1.0) down(5.0) up(5.0)

back(5.0) back(5.0) back(5.0) back(4.0) ]

(n1 > 0.0) → [back(5.0) up(5.0) left(1.0) back(n0) back(5.0) down(5.0) up(1.0)

back(5.0) back(5.0) back(5.0) back(4.0) ]

P8 (n0 > 0.0) → P8(n0/5.0,n1+1.0) [back(4.0) back(4.0) P8(n1-2.0,n0-5.0) ]

(n1 > -2.0) → [P8(n0/4.0,n1+1.0) back(5.0) back(4.0) P8(2.0-5.0,3.0-5.0) back(4.0)

back(5.0) P6(n1-n0,n0+n1) ]

(n0 > -1.0) → counter-clockwise(1.0) down(3.0) down(n0)

with the resulting table shown in �gure 5.7.a. Thus through the process of evolution the

generative representation has evolved an encoding which has a modularization of the table

into the number of legs, height and surface.

This generative representation, when started with P0(4, 10) and run for 17 iterations,

produces the following assembly procedure:
right(1) down(1) up(5) back(2) back(4) back(3) back(3) back(3) back(5) back(14) [left(4) counter-clockwise(4) ] [ clockwise(1)

clockwise(1) left(1) clockwise(1) clockwise(5) right(1) clockwise(1) ] down(1) clockwise(1) [back(4) back(4) ] [ back(4) back(4) [back(4)
back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) [back(5) back(4) back(4) back(4) ] ] ] [back(4) back(4) [back(4) back(4)
] [back(4) back(4) ] [back(4) back(4) [ [back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [ back(5)
up(1) back(13.7) left(1) back(13.7) down(5) up(1) back(5) left(-0.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) [[ [back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [
back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4) back(4) ] back(4) back(4) back(4)
[back(5) up(1) back(12.7) left(1) back(12.7) down(5) up(1) back(5) left(-1.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ]
[back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[[[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ]
back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [ back(4) back(4) ] [back(4) back(4)
] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5)
up(1) back(11.7) left(1) back(11.7) down(5) up(1) back(5) left(-2.3) back(5) down(1) ] ] ] ] [back(4) back(4) [ back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) [[[ [[back(5) back(4) back(4) back(4) ] back(5)
[back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4)
] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(10.7)
left(1) back(10.7) down(5) up(1) back(5) left(-3.3) back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [back(4)
back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [ [[[[[ back(5) back(4) back(4) back(4) ] back(5)
[back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ]
[ back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5)
down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(9.7) left(1) back(9.7) down(5) up(1)
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back(5) left(-4.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4)
] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) [[[[ [[[back(5) back(4) back(4) back(4) ] back(5) [ back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4)
back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) up(1) back(4.4) left(1) back(4.4) down(5) up(1) back(5)
left(0.9) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(8.7) left(1) back(8.7) down(5) up(1) back(5) left(-5.3)
back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) ] [back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[[[[ [[[back(5) back(4) back(4) back(4) ]
back(5) [ back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) up(1) back(3.4) left(1) back(3.4) down(5) up(1) back(5) left(-0.1) back(5)
down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(7.7) left(1) back(7.7) down(5) up(1) back(5) left(-6.3) back(5) down(1)
] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ]
] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4)
[[[ [[[[[ [back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1)
back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ]
back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(2.4) left(1) back(2.4) down(5) up(1) back(5)
left(-1.1) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(6.6) left(1) back(6.6) down(5) up(1) back(5) left(-7.3)
back(5) down(1) ] ] ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [ back(4) back(4) ]
[back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] ] [ back(4) back(4) ] [back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) [[[[ [[[[[ [back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) up(1) back(1.1) left(1) back(1.1) down(5) up(1) back(5) left(0.2) back(5) down(1) ] ] back(5) back(4) back(4)
back(4) [back(5) up(1) back(1.4) left(1) back(1.4) down(5) up(1) back(5) left(-2) back(5) down(1) ] ] back(5) back(4) back(4) back(4)
[back(5) up(1) back(5.5) left(1) back(5.5) down(5) up(1) back(5) left(-8.2) back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4)
] [back(4) back(4) [ back(4) back(4) ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) [ back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ]
[back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] left(1)
left(1) right(1) right(1) up(5) back(2) back(4) back(3) back(3) back(3) back(5) back(14) [left(4) counter-clockwise(4) ] [clockwise(1)
clockwise(1) left(1) clockwise(1) clockwise(5) right(1) clockwise(1) ] down(1) clockwise(1) [back(4) back(4) ] [back(4) back(4) [back(4)
back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) [back(5) back(4) back(4) back(4) ] ] ] [back(4) back(4) [back(4) back(4)
] [back(4) back(4) ] [ back(4) back(4) [[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5)
up(1) back(13.7) left(1) back(13.7) down(5) up(1) back(5) left(-0.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4)
back(4) ] [ back(4) back(4) ] [back(4) back(4) [[[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [ back(4) back(4) ] [back(4) back(4) ] back(4) back(4) back(4)
[back(5) up(1) back(12.7) left(1) back(12.7) down(5) up(1) back(5) left(-1.3) back(5) down(1) ] ] ] ] [back(4) back(4) [ back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[ [[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4)
] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4) back(4)
] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5)
up(1) back(11.7) left(1) back(11.7) down(5) up(1) back(5) left(-2.3) back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[[[[ back(5) back(4) back(4) back(4) ] back(5)
[back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ]
[ back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(10.7)
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left(1) back(10.7) down(5) up(1) back(5) left(-3.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) [[[ [[[back(5) back(4) back(4) back(4) ] back(5) [
back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ]
[back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) left(1) back(5)
down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) up(1) back(9.7) left(1) back(9.7) down(5) up(1)
back(5) left(-4.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4)
] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [ [[[[[ [back(5) back(4) back(4) back(4) ] back(5) [back(4)
back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(4.4) left(1) back(4.4) down(5) up(1) back(5)
left(0.9) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(8.7) left(1) back(8.7) down(5) up(1) back(5) left(-5.3)
back(5) down(1) ] ] ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) ] [back(4) back(4) ]
[ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[ [[[[[ [back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(3.4) left(1) back(3.4) down(5) up(1) back(5) left(-0.1) back(5)
down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(7.7) left(1) back(7.7) down(5) up(1) back(5) left(-6.3) back(5) down(1)
] ] ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4)
] ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4)
[[[[[ [[[[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1)
back(5) back(5) back(5) ] ] back(5) [ back(4) back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ]
back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(2.4) left(1) back(2.4) down(5) up(1) back(5)
left(-1.1) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(6.6) left(1) back(6.6) down(5) up(1) back(5) left(-7.3)
back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4) [ back(4) back(4) ] ] [ back(4) back(4) [back(4) back(4)
] [back(4) back(4) ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) ] [back(4) back(4) ]
[back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [ [[[[[ [[[[back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [ back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) up(1) back(1.1) left(1) back(1.1) down(5) up(1) back(5) left(0.2) back(5) down(1) ] ] back(5) back(4) back(4)
back(4) [back(5) up(1) back(1.4) left(1) back(1.4) down(5) up(1) back(5) left(-2) back(5) down(1) ] ] back(5) back(4) back(4) back(4)
[back(5) up(1) back(5.5) left(1) back(5.5) down(5) up(1) back(5) left(-8.2) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [
back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) ] ] [ back(4) back(4) [back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] [back(4)
back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] ] left(1)
left(1) right(1) right(1) up(5) back(2) back(4) back(3) back(3) back(3) back(5) back(14) [left(4) counter-clockwise(4) ] [clockwise(1)
clockwise(1) left(1) clockwise(1) clockwise(5) right(1) clockwise(1) ] down(1) clockwise(1) [back(4) back(4) ] [back(4) back(4) [back(4)
back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) [back(5) back(4) back(4) back(4) ] ] ] [back(4) back(4) [ back(4) back(4)
] [back(4) back(4) ] [back(4) back(4) [[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5)
up(1) back(13.7) left(1) back(13.7) down(5) up(1) back(5) left(-0.3) back(5) down(1) ] ] ] ] [back(4) back(4) [ back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) [ [[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4) back(4) ] back(4) back(4) back(4)
[back(5) up(1) back(12.7) left(1) back(12.7) down(5) up(1) back(5) left(-1.3) back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) [[[[ back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4)
] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [ back(4) back(4)
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] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5)
up(1) back(11.7) left(1) back(11.7) down(5) up(1) back(5) left(-2.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [ back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[ [[[back(5) back(4) back(4) back(4) ] back(5) [
back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ]
[back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5) up(1) back(10.7)
left(1) back(10.7) down(5) up(1) back(5) left(-3.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[[[[ [back(5) back(4) back(4) back(4) ] back(5)
[back(4) back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4)
] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5)
down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(9.7) left(1) back(9.7) down(5) up(1)
back(5) left(-4.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4)
] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) [[[ [[[[back(5) back(4) back(4) back(4) ] back(5) [back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [ back(4) back(4) ] [back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(4.4) left(1) back(4.4) down(5) up(1) back(5)
left(0.9) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(8.7) left(1) back(8.7) down(5) up(1) back(5) left(-5.3)
back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4) [ back(4) back(4) ] ] [ back(4) back(4) ] [back(4) back(4)
] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) [[[[ [[[[back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [ back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(3.4) left(1) back(3.4) down(5) up(1) back(5) left(-0.1) back(5)
down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(7.7) left(1) back(7.7) down(5) up(1) back(5) left(-6.3) back(5) down(1)
] ] ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4) [ back(4) back(4) ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4)
] ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4)
[[ [[[[[ [[back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1)
back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ]
back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(2.4) left(1) back(2.4) down(5) up(1) back(5)
left(-1.1) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(6.6) left(1) back(6.6) down(5) up(1) back(5) left(-7.3)
back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [
back(4) back(4) ] ] [ back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) ] [ back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) [[[ [[[[[ [[back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) up(1) back(1.1) left(1) back(1.1) down(5) up(1) back(5) left(0.2) back(5) down(1) ] ] back(5) back(4) back(4)
back(4) [back(5) up(1) back(1.4) left(1) back(1.4) down(5) up(1) back(5) left(-2) back(5) down(1) ] ] back(5) back(4) back(4) back(4)
[ back(5) up(1) back(5.5) left(1) back(5.5) down(5) up(1) back(5) left(-8.2) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ]
[back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4)
back(4) ] [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] ] [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] left(1)
left(1) right(1) right(1) up(5) back(2) back(4) back(3) back(3) back(3) back(5) back(14) [ left(4) counter-clockwise(4) ] [clockwise(1)
clockwise(1) left(1) clockwise(1) clockwise(5) right(1) clockwise(1) ] down(1) clockwise(1) [ back(4) back(4) ] [back(4) back(4) [back(4)
back(4) ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) [back(5) back(4) back(4) back(4) ] ] ] [ back(4) back(4) [back(4) back(4)
] [back(4) back(4) ] [back(4) back(4) [[ back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5)
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up(1) back(13.7) left(1) back(13.7) down(5) up(1) back(5) left(-0.3) back(5) down(1) ] ] ] ] [ back(4) back(4) [back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [ back(4) back(4) [[[ back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [ back(4) back(4) ] back(4) back(4) back(4)
[back(5) up(1) back(12.7) left(1) back(12.7) down(5) up(1) back(5) left(-1.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [
back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [ [[[back(5) back(4) back(4) back(4) ] back(5) [ back(4) back(4)
] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4) back(4)
] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [ back(5)
up(1) back(11.7) left(1) back(11.7) down(5) up(1) back(5) left(-2.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) [[[[ [back(5) back(4) back(4) back(4) ] back(5) [back(4)
back(4) ] back(4) back(4) back(4) [ back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(10.7) left(1)
back(10.7) down(5) up(1) back(5) left(-3.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] [ back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[ [[[[back(5) back(4) back(4) back(4) ] back(5)
[back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [ back(4) back(4)
] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4)
back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5)
down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(9.7) left(1) back(9.7) down(5) up(1)
back(5) left(-4.3) back(5) down(1) ] ] ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4)
] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[[[[ [[back(5) back(4) back(4) back(4) ] back(5) [back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [back(4)
back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(4.4) left(1) back(4.4) down(5) up(1) back(5)
left(0.9) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(8.7) left(1) back(8.7) down(5) up(1) back(5) left(-5.3)
back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) ] [back(4) back(4) ]
[back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [ [[[[[ [[back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4)
back(4) ] [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(3.4) left(1) back(3.4) down(5) up(1) back(5) left(-0.1) back(5)
down(1) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(7.7) left(1) back(7.7) down(5) up(1) back(5) left(-6.3) back(5) down(1)
] ] ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4)
] ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4)
[[[[ [[[[[ back(5) back(4) back(4) back(4) ] back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1)
back(5) back(5) back(5) ] ] back(5) [back(4) back(4) ] [ back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ]
back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4)
[back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1)
up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) up(1) back(2.4) left(1) back(2.4) down(5) up(1) back(5)
left(-1.1) back(5) down(1) ] ] back(5) back(4) back(4) back(4) [ back(5) up(1) back(6.6) left(1) back(6.6) down(5) up(1) back(5) left(-
7.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4)
] [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) ] [back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) [[[[[ [[[[[ back(5) back(4) back(4) back(4) ]
back(5) [back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) [back(4)
back(4) ] [ back(4) back(4) ] back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1)
back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5)
back(5) back(5) ] ] back(5) back(4) back(4) back(4) [back(5) left(1) back(5) down(1) up(1) back(5) back(5) back(5) ] ] back(5) back(4)
back(4) back(4) [back(5) up(1) back(1.1) left(1) back(1.1) down(5) up(1) back(5) left(0.2) back(5) down(1) ] ] back(5) back(4) back(4)
back(4) [ back(5) up(1) back(1.4) left(1) back(1.4) down(5) up(1) back(5) left(-2) back(5) down(1) ] ] back(5) back(4) back(4) back(4)
[back(5) up(1) back(5.5) left(1) back(5.5) down(5) up(1) back(5) left(-8.2) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4) back(4) ]
[back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [back(4)
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back(4) ] [back(4) back(4) ] ] [back(4) back(4) [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] [back(4)
back(4) ] [back(4) back(4) ] [ back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] [back(4) back(4) ] ] left(1) left(1)
right(1) right(1)
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Appendix B

A Neural-Network for 3/5/7-Parity

This appendix contains the genotype for the parametric parity-network constructor referred

to in section 5.2. The command set used in this encoding is listed in table 4.2.

P0 (n0>7.0) → output(1.0) parent(1.0) P11(n0+n1,n0+n1) parent(1.0)

P10(n0,n0/n1) split(1.0) decrease-weight(1.0) reverse(n1)

merge(1.0)

(n0>6.0) → output(1.0) parent(1.0) P11(n0+n1,n0+n1) parent(1.0)

P10(n0,n0/n1) split(1.0) loop(1.0) reverse(n1) merge(1.0)

merge(n1)

(n1>0.0) → output(1.0) parent(1.0) P11(n0+n1,n0+n1) parent(1.0)

split(1.0) P10(n0,n0/n1) reverse(n1) merge(1.0)
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P1 (n0>6.0) → {increase-weight(1.0) input(1.0) P3(n1-1.0,n1/4.0) par-

ent(1.0) parent(1.0) }(n0) loop(1.0) [decrease-weight(3.0)

]

(n0>5.0) → {increase-weight(1.0) input(1.0) P3(n1-1.0,n1/4.0) par-

ent(1.0) loop(1.0) }(n0)

(n0>2.0) → {increase-weight(1.0) input(1.0) P3(n1-1.0,n1/4.0) par-

ent(1.0) parent(1.0) }(n0) loop(1.0) [decrease-weight(3.0)

]

P3 (n1>4294967294.0) → {parent(4.0) duplicate(3.0) }(n0) merge(1.0)

(n1>4294967293.0) → {decrease-weight(1.0) parent(4.0) duplicate(3.0) }(n0)

merge(1.0)

(n1>0.0) → {parent(4.0) duplicate(3.0) parent(4.0) duplicate(3.0) dupli-

cate(3.0) }(n0) merge(1.0)

P4 (n0>3.0) → next(1.0)

(n0>-1.0) → next(1.0)

(n1>2.0) → parent(1.0) parent(1.0)

P9 (n0>12.0) → parent(1.0) duplicate(1.0)

(n1>10.0) → parent(1.0) duplicate(1.0)

(n1>0.0) → parent(1.0) duplicate(1.0)

P10 (n1>0.0) → [increase-weight(1.0) parent(4.0) next(1.0) decrease-

weight(2.0) parent(4.0) next(1.0) split(4.0) ] P1(n0-

0.0,n1/1.0) reverse(1.0)

(n0>3.0) → parent(1.0) [decrease-weight(2.0) parent(4.0) next(1.0)

split(4.0) ] {increase-weight(1.0) P3(n1-1.0,n1-4.0) input(1.0)

parent(1.0) loop(1.0) }(n0) reverse(1.0)

(n0>0.0) → split(1.0)
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P11 (n0>12.0) → [parent(1.0) P4(n0-n1,5.0) reverse(1.0) duplicate(1.0) ]

decrease-weight(n1) parent(3.0) parent(1.0) loop(1.0) re-

verse(4.0) duplicate(2.0)

(n1>10.0) → [P9(n0-0.0,n1-0.0) ] decrease-weight(1.0) parent(3.0) par-

ent(1.0) loop(1.0) reverse(4.0) merge(2.0) merge(1.0)

decrease-weight(n0) duplicate(2.0)

(n1>0.0) → [P4(n0-n1,5.0) parent(1.0) reverse(1.0) duplicate(1.0) ]

decrease-weight(n1) parent(1.0) loop(1.0) reverse(4.0) dupli-

cate(2.0)

This L-system is started with either P0(3, 6), P0(5, 6) or (P0(7, 6) and it produces a

network with 3, 5 or 7 inputs and 1 output that correctly solves the 3, 5 or 7 parity problem.

The �nal assembly procedure generated with P0(3.0,6.0) is:

add-output(1.0) parent(1.0) [next(1.0) parent(1.0) reverse(1.0) duplicate(1.0) ] decrease-

weight(9.0) parent(1.0) loop(1.0) reverse(4.0) duplicate(2.0) parent(1.0) split(1.0) [increase-

weight(1.0) parent(4.0) next(1.0) decrease-weight(2.0) parent(4.0) next(1.0) split(4.0) ] increase-

weight(1.0) add-input(1.0) merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0)

merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0)

parent(1.0) loop(1.0) [decrease-weight(3.0) ] reverse(1.0) reverse(6.0) merge(1.0)

The �nal assembly procedure generated with P0(5.0,6.0) is:

add-output(1.0) parent(1.0) [parent(1.0) duplicate(1.0) ] decrease-weight(1.0) parent(3.0)

parent(1.0) loop(1.0) reverse(4.0) merge(2.0) merge(1.0) decrease-weight(11.0) duplicate(2.0)

parent(1.0) split(1.0) [increase-weight(1.0) parent(4.0) next(1.0) decrease-weight(2.0) par-

ent(4.0) next(1.0) split(4.0) ] increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0)

parent(1.0) increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0) parent(1.0) increase-

weight(1.0) add-input(1.0) merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0)

merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0)

parent(1.0) loop(1.0) [decrease-weight(3.0) ] reverse(1.0) reverse(6.0) merge(1.0)

The �nal assembly procedure generated with P0(7.0,6.0) is:
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add-output(1.0) parent(1.0) [parent(1.0) next(1.0) reverse(1.0) duplicate(1.0) ] decrease-

weight(13.0) parent(3.0) parent(1.0) loop(1.0) reverse(4.0) duplicate(2.0) parent(1.0) [increase-

weight(1.0) parent(4.0) next(1.0) decrease-weight(2.0) parent(4.0) next(1.0) split(4.0) ] increase-

weight(1.0) add-input(1.0) merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0)

merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0)

parent(1.0) increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0) parent(1.0) increase-

weight(1.0) add-input(1.0) merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0)

merge(1.0) parent(1.0) parent(1.0) increase-weight(1.0) add-input(1.0) merge(1.0) parent(1.0)

parent(1.0) loop(1.0) [decrease-weight(3.0) ] reverse(1.0) split(1.0) loop(1.0) reverse(6.0)

merge(1.0) merge(6.0)

The networks constructed with these assembly procedures are shown in �gure 7.3.
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Appendix C

Sorting Programs

This appendix describes work using GENRE to evolve computer programs. In these exper-

iments, only the generative reprentation is used because the �eld of genetic programming

has already shown that representations with reuse achieve higher �tness in fewer generations

then non-generative representations [82].

C.1 Sorting Program Construction Language

Table C.1: List of commands for sorting programs.

Command Description
[ ] If FLAG is set, execute instructions enclosed within.
clear Clears FLAG.
compare(n) Compares data elements in memory locations n and n+1 and

sets FLAG if n < n + 1.
swap(n) Swaps data elements in memory locations n and n + 1.

Sorting programs are di�erent from the other classes of problems in that the assembly

procedure is the program. Instead of construction commands, the non-production rules in

the generative representation are commands for a kind of assembly language for a virtual

computer that consists of a FLAG register and a random access memory. These commands

are listed in table C.1. The brackets, `[' and `]', are used as a conditional on the FLAG
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register. If the FLAG register is set then the commands inside the brackets are executed,

otherwise these commands are skipped. Clear unsets the command register. Compare(n)

compares the values in memory locations n and n + 1. If the value in memory location n

is less than the value in memory location n + 1 this command sets the FLAG register. The

only command that a�ects data is swap(n), which exchanges the values in memory locations

n and n + 1. So that compare() and swap() do not access memory elements outside the

range used, their input parameter is modulus the size of the memory array.

C.2 Sorting Program Results

This problem domain consists of �nding a linear sequence of computer instructions that

correctly sort all 128 binary inputs of length seven. The instruction set is described in

section C.1 and is listed in table C.1. Individuals were evaluated by running with all 128

inputs and �tness was the sum of scores for each input vector.

C.2.1 Fitness for Sorting Programs

The graph in �gure C.1 plots the �tness of the best individual in the population, averaged

over 25 trials, with the generative representations.

C.2.2 Reuse and Evolvability for the Sorting Programs

The graph in �gure C.2.a plots the average length of the genotype for the generative rep-

resentations as well as plotting the average length of the assembly procedure produced by

the generative representation. From this graph it can be seen that with the generative rep-

resentation, the number of data elements in the encoding of a sorting program are used

approximately twenty times, on average, in creating a sorting program.
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Figure C.1: Performance for the evolution of sorting programs using the generative repre-
sentation.

Table C.2: Summary of results for sorting programs.

Summary of results Generative
Average �nal best �tness 1649
Percentage of runs which �nd solution. 64%
Average generation solution was found (of runs that found
a solution).

82
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Figure C.2: Graph of length of the generative representation genotype and the assembly
procedure it produced.

C.3 Summary of Results for the Sorting Programs

The experiments for evolving sorting programs are summarized in table C.2. One shortcom-

ing with the existing evolutionary design system is it is limited to evolving linear assembly

procedures. Extending this to tree structured genotypes would allow for future work to

compare the results of this system with other work in genetic programming.
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Appendix D

Two-dimensional Robots

The �rst version of the system for evolving genobots used a two-dimensional world. Actu-

ated joints cycle through 60◦ with variable frequency and relative phase o�set. Static joints

accommodate rods at �xed 60◦ angles. No comparisons between direct and generative repre-

sentations where performed with it, as the three-dimensional environment was implemented

shortly thereafter.

D.1 Two-dimensional Robot Construction Language

Command Description
[ ] Push/pop state to stack.
forward Add bar.
back Move backwards to previous rod.
joint(n) Forward, end with an actuated joint which moves at speed n.
clockwise(n) Rotate heading clockwise n× 60◦.
counter-
clockwise(n)

Rotate heading counterclockwise n× 60◦.

increase-o�set(n) Increase phase o�set by n× 25%.
decrease-o�set(n) Decrease phase o�set by n× 25%.

Table D.1: Design language for oscillator-controlled, two-dimensional robots.

The assembly procedure consists of a sequence of build commands that give instructions

to a LOGO-style turtle that is used to construct a robot from rods. Commands are listed
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in table D.1. [ and ] push and pop the current state - consisting of the current bar, the

orientation and joint oscillation o�set - to and from a stack. Forward moves the turtle

forward in the current direction, creating a bar if none exists or traversing to the end of

the existing bar. Back goes backwards up the parent of the current bar. Clockwise and

counter-clockwise rotate the orientation in steps of 60◦. The joint command operates the

same as forward except that if a new bar is created, it ends with an actuated joint which

oscillates over a range of 60◦. The parameter to this command speci�es the speed at which

the joint oscillates, using integer values from 1 to 5, and the relative o�set of the oscillation

cycle is taken from the turtle's state. Increase-o�set and decrease-o�set change the o�set

value in the turtle's state by ±25% of a total cycle.

(a) (b)

Figure D.1: A sample oscillator-controlled, two-dimensional genobot.

An example genobot constructed by these commands is shown in �gure D.1. It is created

from the string,
joint(1) [ joint(1) forward ] clockwise(2) joint(1) [ joint(1) forward ] clockwise(2)

joint(1) [ joint(1) forward ] clockwise(2)
X's are used to show the location of actuated joints. The left image shows the robot with

all actuated joints in their starting orientation and the image on the right shows the same
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robot with all actuated joints at the other extreme of their actuation cycle. In this example

all actuated joints are moving in phase.

D.2 Generative Representation Example for Oscillator Con-

trolled Genobots

The following is a design encoding using the generative representation and the command

set listed in table D.1. It consists of two productions with each production containing two

condition-successor pairs:

P0(n) : n > 2 → { P0(n− 1) }(n)

n > 0 → joint(1) P1(n× 2) clockwise(2)

P1(n) : n > 2 → [ P1(n/4) ]

n > 0 → joint(1) forward

If the design encoding is started with P0(3), the resulting sequence of strings is produced:

1. P0(3)

2. {P0(2) }(3)

3. { joint(1) P1(4) clockwise(2) }(3)

4. { joint(1) [ P1(1) ] clockwise(2) }(3)

5. { joint(1) [ joint(1) forward ] clockwise(2) }(3)

6. joint(1) [ joint(1) forward ] clockwise(2) joint(1) [ joint(1) forward ]

clockwise(2) joint(1) [ joint(1) forward ] clockwise(2)

This �nal string produces the genobot in �gure D.1.
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(a) (b)

(c) (d)

Figure D.2: The locomotion cycle of a walking star creature, built from 43 bars and 24
actuated joints.
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D.3 Evolved Two-dimensional Genobots

To create designs we run our evolutionary algorithm with 100 individuals for a maximum

of 500 generations. The P0L-systems used have �fteen productions with each production

having two parameters and three sets of condition-successor pairs. Fitness is a function of

the distance moved by the creature's center of mass after 10 simulated seconds.

Evolutionary runs were similar in many ways. The �rst individuals would mainly move

their center of mass while remain in a �xed location. Typically individuals with a repeat-

ing locomotion cycle would appear by generation 30 and these would compete to be the

dominant design in the population. Once converged to one design the EA would try many

variations of it making slow and steady improvements. Periodically a new version would

have a signi�cantly greater �tness and then the population would converge to this variant.

Each evolutionary run was di�erent, resulting in a variety of di�erent creatures, but all

creatures could be classed into one of the following families: crawlers who would use one

appendage to drag the rest of the body forward; walkers who used legs to move with little

dragging; inch-worms that inched along; and rollers that rotated their whole body to move,

see �gures D.2 and D.3.

An example of an actual robot constructed from an evolved design is the walking M

in �gure 5.27.a. This robot moves by bringint its two outer arms, which are 25% out of

phase, together to lift its middle arm and then to shift its center of mass to the right. One

modi�cation to the constructed robot is the addition of sandpaper on the feet of the two

outer arms to compensate for the friction modeled by our simulator and that of the actual

surface used.
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(a) (b)

(c) (d)

Figure D.3: Evolved creatures: a, a multi-legged walker with 24 bars and 12 actuated joints;
b, a rolling circle with 23 bars and 6 actuated joints; c, an inch-worm built from 143 bars
and 16 actuated joints; and d, an undullating serpent with 164 bars and 61 actuated joints;
Notice the re-use of components.
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Appendix E

An Oscillator-Controlled Genobot

The genotype for the genobot in �gure 5.27.b (called the Kayak) is:

P0 (n1>6.0) → increase-o�set(n1) P3(5.0,n1-5.0) [down(1.0) P7(n0,n0-1.0) ]

(n0>6.0) → increase-o�set(3.0) P3(5.0,n1-5.0) [counter-clockwise(n0) P12(n0,n0-1.0)

counter-clockwise(n0) P12(n0,n0-1.0) ]

(n1>0.0) → increase-o�set(3.0) P3(5.0,n1-5.0) [down(1.0) counter-clockwise(n0)

down(1.0) counter-clockwise(n0) P12(n0,n0-1.0) ]

P1 (n1>5.0) → [back ] P1(n1/4.0,3.0) clockwise(1.0)

(n0>4.0) → {revolute2(n0) }(2.0) right(1.0) up(1.0) [up(1.0) down(5.0) decrease-

o�set(1.0) ]

(n1>1.0) → {revolute2(n0) }(2.0) right(1.0) up(1.0) [up(1.0) down(5.0) down(1.0) ]

[up(1.0) down(4.0) decrease-o�set(1.0) ]

P2 (n1>0.0) → up(1.0) P12(n1/5.0,n1/n0) revolute(1.0)

(n1>1.0) → up(1.0) P14(n1/5.0,n1/n0) revolute(1.0)

P3 (n1>-3.0) → left(4.0) P10(n0-3.0,n0-1.0) P2(n0/5.0,n0-5.0) P1(n1-1.0,1.0) left(4.0)

(n0>3.0) → left(4.0) P10(n0-3.0,n0-1.0) P2(n0/5.0,n0-5.0) left(4.0)

(n1>4.0) → decrease-o�set(1.0) P2(n0/5.0,n0-5.0)
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P4 (n1>4.0) → P6(n0+n1,5.0) counter-clockwise(n0) up(1.0) P13(n1,n1/5.0) P1(4.0,5.0)

right(1.0) up(n1)

(n0>4.0) → counter-clockwise(n0) P6(n0+n1,5.0) up(1.0) P13(n1,n1/5.0) P1(4.0,5.0)

right(1.0) up(n1) up(n1)

(n0>0.0) → counter-clockwise(n0) P6(n0+n1,5.0) up(1.0) P13(n1,n1/5.0) P1(4.0,5.0)

right(1.0) up(n0) up(n1)

P5 (n0>-1.0) → right(3.0) right(3.0) P4(n0+4.0,4.0)

(n0>0.0) → increase-o�set(3.0) right(3.0) P4(n0+4.0,4.0)

(n1>0.0) → right(3.0) right(3.0) P4(n0+4.0,4.0)

P6 (n0>8.0) → [P9(2.0-3.0,n0-1.0) P10(n0+n1,n1-2.0) ]

(n0>-3.0) → [P9(2.0-3.0,n0-1.0) P10(n0+n1,n1-2.0) ]

(n1>0.0) → clockwise(n0) counter-clockwise(n1)

P7 (n1>0.0) → left(1.0)

(n0>0.0) → {{down(1.0) }(n0) }(4.0)

P8 (n0>5.0) → counter-clockwise(1.0) counter-clockwise(3.0) up(1.0)

(n0>1.0) → clockwise(2.0) P14(2.0,n0+1.0) counter-clockwise(1.0) counter-

clockwise(1.0) up(1.0)

(n1>0.0) → [clockwise(2.0) P14(2.0,n0+1.0) ]

P9 (n1>5.0) → up(5.0)

(n1>1.0) → P5(n0-1.0,n0/5.0) P7(n1/n0,5.0/4.0) P7(n1/n0,n1/1.0)

(n0>0.0) → P5(n0-1.0,n0/5.0)

P10 (n1>4.0) → [decrease-o�set(3.0) forward ] [clockwise(1.0) ]

(n1>3.0) → right(1.0) {decrease-o�set(5.0) P11(3.0,n1+n0) P6(n0-5.0,n0-4.0) }(2.0)

(n1>0.0) → right(1.0) {decrease-o�set(5.0) P6(n0-5.0,n0-4.0) P11(4.0,n1+n0) }(2.0)

decrease-o�set(5.0)

P11 (n0>1.0) → counter-clockwise(1.0) P11(n0/4.0,n0+n1)

(n0>0.0) → counter-clockwise(1.0) P9(n1/4.0,n0-1.0) P12(n1/5.0,5.0)

(n0>0.0) → counter-clockwise(1.0) P12(n1/5.0,5.0)
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P12 (n1>1.0) → left(1.0) [back right(1.0) ] P9(n1-4.0,3.0) [decrease-o�set(1.0) P8(n1,n1+n0)

] left(n0)

(n1>-1.0) → left(1.0) [back down(n0) ] P9(n1-4.0,3.0) left(n1)

(n1>0.0) → [back down(n0) ] [P8(n0,n0-n1) ]

P13 (n0>4.0) → left(1.0) P12(4.0,1.0-2.0)

(n0>3.0) → [[decrease-o�set(1.0) ] clockwise(4.0) decrease-o�set(1.0) left(1.0) ] left(1.0)

P12(4.0,1.0-2.0)

(n1>0.0) → [] left(1.0) clockwise(4.0)

P14 (n0>5.0) → clockwise(1.0) P5(n1+n0,n1/5.0)

(n0>0.0) → [clockwise(1.0) ] clockwise(1.0)

Started with P0(2, 6) and run for 19 iterations this genotype produces the following

assembly procedure:
increase-o�set(3.0) left(4.0) right(1.0) decrease-o�set(5.0) counter-clockwise(1.0) counter-clockwise(1.0)

right(3.0) right(3.0) counter-clockwise(5.2) [ up(5.0) right(1.0) decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0)

forward ] [ clockwise(1.0) ] ] counter-clockwise(1.0) counter-clockwise(1.0) right(3.0) right(3.0) left(1.0)

[back right(1.0) ] [decrease-o�set(1.0) clockwise(2.0) counter-clockwise(1.0) counter-clockwise(1.0) up(1.0) ]

left(4.2) decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0) forward ] [clockwise(1.0) ] ] counter-clockwise(1.0)

counter-clockwise(1.0) right(3.0) right(3.0) left(1.0) [back right(1.0) ] [decrease-o�set(1.0) clockwise(2.0)

counter-clockwise(1.0) counter-clockwise(1.0) up(1.0) ] left(4.2) decrease-o�set(5.0) ] up(1.0) [[decrease-

o�set(1.0) ] clockwise(4.0) decrease-o�set(1.0) left(1.0) ] left(1.0) revolute2(4.0) revolute2(4.0) right(1.0)

up(1.0) [ up(1.0) down(5.0) down(1.0) ] [ up(1.0) down(4.0) decrease-o�set(1.0) ] right(1.0) up(4.0) up(4.0)

left(1.0) [back right(1.0) ] right(3.0) right(3.0) counter-clockwise(4.0) [up(5.0) right(1.0) decrease-o�set(5.0) [

up(5.0) [decrease-o�set(3.0) forward ] [clockwise(1.0) ] ] counter-clockwise(1.0) counter-clockwise(1.0) left(1.0)

[back right(1.0) ] [decrease-o�set(1.0) ] left(4.0) decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0) forward

] [clockwise(1.0) ] ] counter-clockwise(1.0) counter-clockwise(1.0) left(1.0) [ back right(1.0) ] [decrease-

o�set(1.0) ] left(4.0) decrease-o�set(5.0) ] up(1.0) [[decrease-o�set(1.0) ] clockwise(4.0) decrease-o�set(1.0)

left(1.0) ] left(1.0) revolute2(4.0) revolute2(4.0) right(1.0) up(1.0) [up(1.0) down(5.0) down(1.0) ] [up(1.0)

down(4.0) decrease-o�set(1.0) ] right(1.0) up(4.0) up(4.0) left(1.0) left(1.0) [decrease-o�set(1.0) clockwise(2.0)

[clockwise(1.0) ] clockwise(1.0) counter-clockwise(1.0) counter-clockwise(1.0) up(1.0) ] left(1.8) decrease-

o�set(5.0) counter-clockwise(1.0) counter-clockwise(1.0) right(3.0) right(3.0) counter-clockwise(5.2) [up(5.0)

right(1.0) decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0) forward ] [clockwise(1.0) ] ] counter-clockwise(1.0)

counter-clockwise(1.0) right(3.0) right(3.0) left(1.0) [back right(1.0) ] [ decrease-o�set(1.0) clockwise(2.0)
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counter-clockwise(1.0) counter-clockwise(1.0) up(1.0) ] left(4.2) decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0)

forward ] [ clockwise(1.0) ] ] counter-clockwise(1.0) counter-clockwise(1.0) right(3.0) right(3.0) left(1.0)

[back right(1.0) ] [decrease-o�set(1.0) clockwise(2.0) counter-clockwise(1.0) counter-clockwise(1.0) up(1.0)

] left(4.2) decrease-o�set(5.0) ] up(1.0) [[ decrease-o�set(1.0) ] clockwise(4.0) decrease-o�set(1.0) left(1.0) ]

left(1.0) revolute2(4.0) revolute2(4.0) right(1.0) up(1.0) [up(1.0) down(5.0) down(1.0) ] [up(1.0) down(4.0)

decrease-o�set(1.0) ] right(1.0) up(4.0) up(4.0) left(1.0) [back right(1.0) ] right(3.0) right(3.0) counter-

clockwise(4.0) [up(5.0) right(1.0) decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0) forward ] [clockwise(1.0)

] ] counter-clockwise(1.0) counter-clockwise(1.0) left(1.0) [ back right(1.0) ] [decrease-o�set(1.0) ] left(4.0)

decrease-o�set(5.0) [up(5.0) [decrease-o�set(3.0) forward ] [ clockwise(1.0) ] ] counter-clockwise(1.0) counter-

clockwise(1.0) left(1.0) [back right(1.0) ] [decrease-o�set(1.0) ] left(4.0) decrease-o�set(5.0) ] up(1.0) [[decrease-

o�set(1.0) ] clockwise(4.0) decrease-o�set(1.0) left(1.0) ] left(1.0) revolute2(4.0) revolute2(4.0) right(1.0)

up(1.0) [up(1.0) down(5.0) down(1.0) ] [up(1.0) down(4.0) decrease-o�set(1.0) ] right(1.0) up(4.0) up(4.0)

left(1.0) left(1.0) [decrease-o�set(1.0) clockwise(2.0) [clockwise(1.0) ] clockwise(1.0) counter-clockwise(1.0)

counter-clockwise(1.0) up(1.0) ] left(1.8) left(4.0) [down(1.0) counter-clockwise(2.0) down(1.0) counter-clockwise(2.0)

left(1.0) [ back down(2.0) ] left(1.0) left(1.0) left(1.0) ]
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Appendix F

A Neural-Network Controlled

Genobot

This appendix contains the genotype for the neural-network controlled genobot shown in

�gure 6.4.b. The command set used by this genobot is listed in table 4.6.

P0 (n0>5.0) → reverse(1.0) left(5.0) merge(1.0) increase-weight(1.0) back(1.0) back(1.0)

duplicate(1.0) up(1.0) decrease-weight(4.0) [loop(4.0) P19(1.0,n1+4.0) du-

plicate(1.0) ] counter-clockwise(1.0) forward(5.0) reverse(1.0)

(n1>3.0) → [counter-clockwise(1.0) left(3.0) P10(n1,1.0) ] [clockwise(1.0) left(3.0)

split(1.0) split(1.0) ] P19(n1-4.0,n0/2.0) forward(1.0) counter-

clockwise(1.0)

(n0>4.0) → [counter-clockwise(1.0) left(3.0) P10(n1,1.0) ] [P6(n0-0.0,n1-0.0) ] up(1.0)

P19(n1-4.0,n0/2.0) forward(1.0) counter-clockwise(1.0)

P1 (n0>5.0) → [parent(1.0) loop(1.0) forward(1.0) merge(1.0) ] [forward(3.0) increase-

weight(1.0) increase-weight(1.0) clockwise(n0) left(1.0) ]

(n0>5.0) → [parent(1.0) loop(1.0) forward(1.0) merge(1.0) ] [forward(3.0) increase-

weight(1.0) increase-weight(1.0) clockwise(n0) left(1.0) ]

(n1>0.0) → [split(1.0) clockwise(1.0) parent(1.0) ] forward(1.0) split(1.0) counter-

clockwise(1.0) right(5.0) forward(1.0)
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P6 (n0>5.0) → clockwise(1.0) left(3.0) split(1.0) split(1.0)

(n1>3.0) → clockwise(1.0) left(3.0) split(1.0) split(1.0)

(n0>0.0) → clockwise(1.0) left(3.0) split(1.0) split(1.0)

P8 (n0>5.0) → [merge(1.0) back(4.0) ]

(n0>-1.0) → increase-weight(3.0) P1(n0-4.0,n0+n1) split(1.0) parent(1.0) merge(1.0)

(n1>0.0) → increase-weight(3.0) P1(n0-4.0,n0+n1) split(1.0) parent(1.0) merge(1.0)

increase-weight(3.0) P1(n0-4.0,n0+n1) split(1.0) parent(1.0) merge(1.0)

P10 (n1>5.0) → (right(n1) set-function(n1) decrease-weight(1.0) duplicate(1.0) down(1.0) )

revolute2(1.0)

(n0>2.0) → {forward(3.0) increase-weight(1.0) down(1.0) reverse(1.0) }(4.0) down(1.0)

decrease-weight(1.0) P14(n1-n0,2.0) back(4.0) split(1.0) P18(n0-2.0,n0/2.0)

clockwise(1.0) counter-clockwise(1.0) P10(1.0,5.0)

(n0>0.0) → {forward(1.0) down(1.0) reverse(1.0) increase-weight(1.0) }(4.0) down(1.0)

decrease-weight(1.0) P14(n1-n0,2.0) back(4.0) split(1.0) P18(n0-2.0,n0/2.0)

clockwise(1.0) counter-clockwise(1.0) P10(1.0,5.0)

P14 (n1>5.0) → loop(1.0) reverse(4.0) down(1.0) loop(1.0) revolute2(3.0) {forward(1.0)

P16(n1/n0,n0-4.0) parent(1.0) }(n1) [parent(5.0) down(1.0) right(1.0)

next(1.0) parent(4.0) ]

(n0>2.0) → back(1.0) loop(1.0) loop(n0) increase-weight(1.0) clockwise(1.0)

(n0>-2.0) → back(1.0) loop(1.0) loop(4.0) increase-weight(1.0) clockwise(1.0)

P15 (n1>1.0) → counter-clockwise(1.0) counter-clockwise(1.0) counter-clockwise(1.0)

decrease-weight(1.0)

(n1>1.0) → counter-clockwise(1.0) counter-clockwise(1.0) counter-clockwise(1.0)

counter-clockwise(1.0)

(n1>0.0) → counter-clockwise(1.0) parent(4.0) forward(1.0) [forward(3.0) forward(1.0)

increase-weight(1.0) right(1.0) ] set-function(1.0) back(1.0) next(4.0)

back(1.0)
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P18 (n1>1.0) → next(3.0) revolute2(1.0) forward(1.0) reverse(1.0) parent(1.0) revolute2(n0)

(n1>0.0) → {P8(n0-0.0,n1-0.0) next(3.0) forward(n0) next(n1) revolute2(1.0) next(3.0)

revolute2(1.0) }(n1) forward(1.0) reverse(1.0) parent(1.0) revolute2(n0)

(n0>0.0) → {P8(n0-0.0,n1-0.0) next(3.0) revolute2(1.0) }(n1) forward(1.0) reverse(1.0)

parent(1.0) revolute2(n0)

P19 (n1>1.0) → down(1.0) merge(1.0) merge(1.0) down(1.0) decrease-weight(1.0)

{merge(3.0) right(n0) right(n0) }(2.0) {right(n0) right(n0) }(2.0) P15(n0-

0.0,5.0-0.0) (n0) left(1.0)

(n1>1.0) → down(1.0) merge(1.0) down(1.0) decrease-weight(1.0) parent(1.0)

merge(3.0) left(1.0)

(n1>0.0) → down(1.0) merge(1.0) down(1.0) decrease-weight(1.0) parent(1.0)

merge(3.0) left(5.0)

This L-system is started with the command, P0(5, 3) and after 11 iterations of rewrites

it produces the following assembly procedure,
[counter-clockwise(1) left(3) forward increase-weight(1) down(1) reverse(1) forward increase-

weight(1) down(1) reverse(1) forward increase-weight(1) down(1) reverse(1) forward increase-weight(1)

down(1) reverse(1) down(1) decrease-weight(1) backward split(1) next(3) revolute2(1) forward re-

verse(1) parent(1) revolute2(1) clockwise(1) counter-clockwise(1) forward down(1) reverse(1) increase-

weight(1) forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1)

forward down(1) reverse(1) increase-weight(1) down(1) decrease-weight(1) backward loop(1) loop(4)

increase-weight(1) clockwise(1) backward split(1) forward reverse(1) parent(1) revolute2(-1) clock-

wise(1) counter-clockwise(1) forward down(1) reverse(1) increase-weight(1) forward down(1) re-

verse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1)

increase-weight(1) down(1) decrease-weight(1) backward loop(1) loop(4) increase-weight(1) clock-

wise(1) backward split(1) forward reverse(1) parent(1) revolute2(-1) clockwise(1) counter-clockwise(1)

forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) for-

ward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) down(1)

decrease-weight(1) backward loop(1) loop(4) increase-weight(1) clockwise(1) backward split(1) for-

ward reverse(1) parent(1) revolute2(-1) clockwise(1) counter-clockwise(1) forward down(1) reverse(1)

increase-weight(1) forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-

weight(1) forward down(1) reverse(1) increase-weight(1) down(1) decrease-weight(1) backward loop(1)
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loop(4) increase-weight(1) clockwise(1) backward split(1) forward reverse(1) parent(1) revolute2(-1)

clockwise(1) counter-clockwise(1) forward down(1) reverse(1) increase-weight(1) forward down(1)

reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) forward down(1) re-

verse(1) increase-weight(1) down(1) decrease-weight(1) backward loop(1) loop(4) increase-weight(1)

clockwise(1) backward split(1) forward reverse(1) parent(1) revolute2(-1) clockwise(1) counter-clockwise(1)

forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) for-

ward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) down(1)

decrease-weight(1) backward loop(1) loop(4) increase-weight(1) clockwise(1) backward split(1) for-

ward reverse(1) parent(1) revolute2(-1) clockwise(1) counter-clockwise(1) forward down(1) reverse(1)

increase-weight(1) forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-

weight(1) forward down(1) reverse(1) increase-weight(1) down(1) decrease-weight(1) backward loop(1)

loop(4) increase-weight(1) clockwise(1) backward split(1) forward reverse(1) parent(1) revolute2(-1)

clockwise(1) counter-clockwise(1) forward down(1) reverse(1) increase-weight(1) forward down(1)

reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) forward down(1) re-

verse(1) increase-weight(1) down(1) decrease-weight(1) backward loop(1) loop(4) increase-weight(1)

clockwise(1) backward split(1) forward reverse(1) parent(1) revolute2(-1) clockwise(1) counter-clockwise(1)

forward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) for-

ward down(1) reverse(1) increase-weight(1) forward down(1) reverse(1) increase-weight(1) down(1)

decrease-weight(1) backward split(1) clockwise(1) counter-clockwise(1) ] [clockwise(1) left(3) split(1)

split(1) ] up(1) down(1) merge(1) merge(1) down(1) decrease-weight(1) left(1) forward counter-

clockwise(1)
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Appendix G

Source Code

GENRE consists of over 50,000 lines of C++ code spread across more than 50 �les. These

�les describe the evolutionary algorithm, L-system representation (with compiler and vari-

ation operators), two-dimensional and three-dimensional physics simulators, statistics mod-

ule, linear algebra and quaternion modules, neural network module, graphics module, ran-

dom number generator, and other components of the evolutionary design system. This ap-

pendix contains some of the source code for the implementation of the generative-representation

compiler described in chapter 3.

Each individual in GENRE is an L-system and is de�ned by the C++ class ind_lsys,

which uses the class prod_body for each production body. The following sections are the

header �les and parts of the source code for compiling an L-system to its assembly procedure

and also for storing the execution history of this compilation process. Not included is the

source code for creating random L-systems or for mutating/recombining L-systems.

An individual's L-system is compiled into an assembly procedure in ind_lsys's proce-

dure evaluate_helper(). In this procedure, start_tape() is called to start the compi-

lation process, and then each iteration of rewriting is performed by calling the procedure

process_tape(). The �nal string is converted to an assembly procedure by calling the

procedure tape_to_string().
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G.1 ind_lsys.hh

#define CREATE_INIT -1
#define CREATE_MUTATE 0
#define CREATE_RECOMBINE 1
#define TAPE_END '.'

#define NUM_PRODUCTIONS 15
#define MAX_PROD_BODIES 2
#define MAX_PROD_VARS 3
#define MAX_CONSTANTS 10
#define MAX_FUNCTIONS 0

#define OP_RECOMB 1
#define OP_MUTATE 2
#define OP_REC_RULE 0
#define OP_REC_PROD 1
#define NUM_RECOMB_OPS 2
#define OP_MUT_CONST 2
#define OP_MUT_CHAR 3
#define OP_MUT_ADD 4
#define OP_MUT_DEL 5
#define OP_MUT_REORDER 6
#define OP_MUT_COND 7
#define OP_MUT_REPLICATE 8
#define NUM_MUTATE_OPS 7

#define OP_REC_CONST 9
#define OP_UNKNOWN 9

extern Real Rec_delta;
extern int Num_arguments;
extern int Num_constants;
extern int Num_functions;
extern int Num_productions;
extern int Max_bodies;
extern int Num_operations;
extern Real Prob_mult_seq;
extern Real Prob_branch_edge;

extern int Max_prod_length;
extern int Prod_length;
extern int Max_string_length;

class Prod_Body;
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typedef struct History
{
int index;
int how_created;
int operation;
int num_mutate;
int num_recombine;
int op_count[15];
Real delta;
Real val1;

Real fitness[10];
Real fitness_prev[10];

} history;

typedef struct tConstant
{
Real value;
int used;

} Constant;

typedef struct tTape
{
char type;
char symbol;
Real *arg;

} Tape;

typedef struct Production_Head
{
int num_bodies;
int used;
Real *max;
Real *min;
Prod_Body **body;

} *Prod_Head;

class Individual
{
public:
int created;
int evaluated;
int version;
int iterations;
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int length;
Constant constant[MAX_CONSTANTS];
Prod_Head *rules;
LString *lstring;
ModelStruct model;

history hist_self;
history hist_parent1;
history hist_parent2;

Individual(void); // perhaps input data struct
Individual(Individual *sample);
void clear(void);
int randomize_rule(int r);
void make_random(void);
void init(void);
void init(int init_h);
void init_pheno(int init_h); // For making single production rule & body.
int repair_rule(Prod_Head ph);
int repair_rule(int i);
void repair_init(void);

int create_mutate(void);
int better(void);
int better(Individual *other);
int replace(Individual *other);
int fitness_fail(void);
Real get_fitness(void);
void get_fitness(Real *fitness_vector);
void set_fitness(Real val);
Real get_fitness(int index);
void set_fitness(Real *val);
void set_fitness(int index, Real val);
void add_fitness(Real val);
void div_fitness(Real val);
void set_creation(int type);
int get_creation(void);
void init_hist(history *hist);
void init_hist(void);
void duplicate_hist(history *hist_from, history *hist_to);
void duplicate(Individual *ind);
int duplicate_pheno(Individual *ind);
void op_used(int op_num);
int system_length(void);
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int duplicate_used_bodies(int r);
int mutate_rule_duplicate(int r);
int mutate_rule_new(int r);
int mutate_rule(int r);
void clear_rule(int r);
int random_used_body_p2(int r);
int random_used_body(int r);
int random_unused_body(int r);
int is_rule_used(int r);
int random_used_rule(void);
int random_unused_rule(void);
int random_used_constant(void);
int mutate_constant(void);
int encapsulate(int r);
int mutate(Real alpha);
int mutate(void);
int mutate_pheno(void);
int mutate_init(void);
int recombine_constants(Individual *parent2);
int recombine_productions(Individual *parent2);
int recombine_rule(Individual *parent2);
int join(Individual *parent2);
int recombine(Individual *parent2);
int recombine_pheno(Individual *parent2);

int process_tape(Tape *tape_src, Tape *tape_dest);
void reset_used(void);
int start_tape(Real *var, Tape *tape);
int tape_to_string(Tape *tape, LString *string);
int edit_distance(Individual *ind2);
int phenotype_distance(Individual *ind2);
int phenotype_distance2(Individual *ind2);
int phenotype_dist(Individual *ind2);
void display(void);
Real evaluate_helper(int init, int iterations, Real *argument);
Real evaluate(int init);
Real evaluate(void);

void print_fitness(void);
void print_history(history *hist);
void print_history2(history *hist);
void fprint_history2(history *hist, FILE *log);
void print_history_self(void);
void print_history_self2(void);
void fprint_history_self2(FILE *log);
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void print_history(void);
void fprint_history(FILE *log);
void print_history_full(void);
void print_results(void);
void info(void);

int read_history(history *hist, FILE *file);
int read(FILE *file);
void write_history(history *hist, FILE *file);
void write(FILE *file);
void write_pheno(FILE *file);

};

void print_lchar(int i, LString *lstring);

G.2 ind_lsys.cc
extern Real evaluate_ind(int init, int size, Individual *ind);

int Num_arguments = MAX_PROD_VARS;
int Num_constants = MAX_CONSTANTS;
int Num_functions = MAX_FUNCTIONS;
int Num_productions = NUM_PRODUCTIONS;
int Max_bodies = MAX_PROD_BODIES;
int Num_operations = 10;

int Num_processed;

LString Lstring[MAX_STRING_LENGTH + BONUS_LENGTH];
Tape Tape1[MAX_STRING_LENGTH + BONUS_LENGTH];
Tape Tape2[MAX_STRING_LENGTH + BONUS_LENGTH];
int Created_tape = FALSE;

int process_rule(Real *var, Tape *tape_dest, Prod_Head phead);
int tape_2_string(char end_type, char end_symbol,

int *t, Tape *tape, int *s, char *string);
Real table_fitness(Real p_height, Real p_surf, Individual *ind);

// Returns the number of symbols added.
int process_rule(Real *arg, Tape *tape_dest, Prod_Head phead)
{
int i;

// Statistics stuff.
phead->used++;
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for (i=0; i<Num_arguments; i++) {
if (phead->used == 1) {
phead->min[i] = arg[i];
phead->max[i] = arg[i];

} else {
if (arg[i] < phead->min[i])

phead->min[i] = arg[i];
else if (arg[i] > phead->max[i])

phead->max[i] = arg[i];
}

}

// Process the rule.
for (i=0; i<phead->num_bodies; i++) {
if (phead->body[i]->test_cond(arg)) {
if (Print[3])

printf("%d:", i);
return phead->body[i]->write_body(arg, tape_dest);

}
}
return 0;

}

Individual :: Individual(void)
{
init_hist(&hist_self);
init_hist(&hist_parent1);
init_hist(&hist_parent2);
created = FALSE;
evaluated = FALSE;
iterations = 4;
version = IND_VERSION;

}

Individual :: Individual(Individual *sample)
{
init_hist(&hist_self);
init_hist(&hist_parent1);
init_hist(&hist_parent2);
created = FALSE;
evaluated = FALSE;
version = IND_VERSION;

if (sample != 0)

187



iterations = sample->iterations;
}

void Individual :: init(int init_h)
{
int i, j;

if (!Created_tape) {
Created_tape = TRUE;

int num_args = Num_arguments;
if (num_args == 0)
num_args = 1;

for (i=0; i<MAX_STRING_LENGTH+BONUS_LENGTH; i++) {
Tape1[i].arg = (Real*)malloc(num_args * sizeof(Real));
if (Tape1[i].arg == 0) {

printf("Ind_lsys :: init() malloc for tape 1 failed.\n");
return;

}

Tape2[i].arg = (Real*)malloc(num_args * sizeof(Real));
if (Tape2[i].arg == 0) {

printf("Ind_lsys :: init() malloc for tape 1 failed.\n");
return;

}
}

}

if (!created) {
created = TRUE;
length = -1;
if (Option[10]) {
lstring = (LString*)malloc(MAX_STRING_LENGTH*sizeof(LString));
if (lstring == 0) {

printf("Ind_lsys :: init() malloc for lstring failed.\n");
return;

}

} else {
lstring = (LString*)malloc(MAX_STRING_LENGTH*sizeof(LString));

}
if (Option[10])
model.model_id = -1;

else
model.model_id = 0;
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model.lstring = lstring;
if (Num_fit_dims == 1) {
model.fv_length = 1;

} else if (Num_fit_dims == 4) {
model.fv_length = 4;

} else {
model.fv_length = Num_fit_dims;

}
model.fitness = (Real*)malloc(Num_fit_dims * sizeof(Real));
model.build_args = (Real*)malloc(MAX_CONSTANTS * sizeof(Real));
model.offset[0] = 0.0;
model.offset[1] = 0.0;
model.offset[2] = 0.0;

rules = (Prod_Head*)malloc(Num_productions * sizeof(Prod_Head));
for (i=0; i<Num_productions; i++) {
rules[i] = (Prod_Head)malloc(sizeof(Production_Head));
if (rules[i] == 0) {

printf("Ind_lsys :: init() malloc for rules[%d] failed.\n", i);
return;

}

rules[i]->max = (Real*)malloc(Num_arguments * sizeof(Real));
if (rules[i]->max == 0) {

printf("Ind_lsys :: init() malloc for rules[%d]->max failed.\n", i);
return;

}

rules[i]->min = (Real*)malloc(Num_arguments * sizeof(Real));
if (rules[i]->min == 0) {

printf("Ind_lsys :: init() malloc for rules[%d]->min failed.\n", i);
return;

}

rules[i]->body = (Prod_Body**)malloc(Max_bodies * sizeof(Prod_Body*));
if (rules[i]->body == 0) {

printf("Ind_lsys :: init() malloc for rules[%d]->body failed.\n",
i);

return;
}

for (j=0; j<Max_bodies; j++) {
rules[i]->body[j] = new Prod_Body();
rules[i]->body[j]->phead = rules[i];
rules[i]->body[j]->constant = &(constant[0]);
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rules[i]->body[j]->parent = this;
}

}
}

if (init_h) {
init_hist(&hist_self);
init_hist(&hist_parent1);
init_hist(&hist_parent2);

}
created = TRUE;

}

void Individual :: init(void)
{
init(TRUE);

}

void Individual :: init_hist(history *hist)
{
int i;

hist->index = -1;
hist->how_created = CREATE_INIT;
hist->num_mutate = 0;
hist->num_recombine = 0;
hist->delta = 0.0;

for (i=0; i<Num_fit_dims; i++) {
hist->fitness[i] = 0.0;
hist->fitness_prev[i] = 0.0;

}

for (i=0; i<Num_operations; i++)
hist->op_count[i] = 0;

}

void Individual :: init_hist(void)
{
int i;

hist_self.index = -1;
hist_self.how_created = CREATE_INIT;
hist_self.num_mutate = 0;
hist_self.num_recombine = 0;
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hist_self.delta = 0.0;
hist_self.fitness_prev[0] = 0.0;

for (i=0; i<Num_operations; i++)
hist_self.op_count[i] = 0;

}

int Individual :: process_tape(Tape *tape_src, Tape *tape_dest)
{
int src = 0, dst = 0;

while (tape_src[src].symbol != TAPE_END) {
if (tape_src[src].type == PBC_TYPE_PRODUCTION) {
// Handle production
dst += process_rule(tape_src[src].arg, &(tape_dest[dst]),

rules[tape_src[src].symbol]);

} else {
// Handle non-production.
tape_dest[dst].type = tape_src[src].type;
tape_dest[dst].symbol = tape_src[src].symbol;
tape_dest[dst].arg[0] = tape_src[src].arg[0];
dst++;

}
src++;

if (dst >= MAX_STRING_LENGTH)
break;

}

tape_dest[dst].type = PBC_TYPE_NONE;
tape_dest[dst].symbol = TAPE_END;

return dst;
}

void Individual :: reset_used(void)
{
int i, j;

for (i=0; i<Num_constants; i++)
constant[i].used = 0;

for (i=0; i<Num_productions; i++) {
rules[i]->used = 0;
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for (j=0; j<Num_arguments; j++) {
rules[i]->max[j] = 0.0;
rules[i]->min[j] = 0.0;

}

for (j=0; j<rules[i]->num_bodies; j++) {
rules[i]->body[j]->used = 0;
rules[i]->body[j]->tested = 0;

}
}

}

int Individual :: start_tape(Real *arg, Tape *tape_dest)
{
int t;

t = process_rule(arg, tape_dest, rules[0]);
tape_dest[t].type = PBC_TYPE_NONE;
tape_dest[t].symbol = TAPE_END;

return t;
}

int tape_2_string(char end_type, char end_symbol, int *t,
Tape *tape, int *s, LString *string)

{
char symbol, type;
int i, mult_val, s2;

while (1) {
if (Num_processed++ > MAX_PROCESSED) {
return FALSE;

}

if (*s >= MAX_STRING_LENGTH) {
string[0].symbol = 0;
return FALSE;

}

type = tape[*t].type;
symbol = tape[*t].symbol;

if ((type == end_type) && (symbol == end_symbol)) {
// End of block.
*t += 1;
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if (type == PBC_TYPE_BLOCK) {
if ((symbol == SYMBOL_POP) || (symbol == SYMBOL_POP_EDGE)) {
string[*s].symbol = symbol;
*s += 1;

}
}

return TRUE;

} else if (type == PBC_TYPE_PRODUCTION) {
// Production.
*t += 1;
continue;

} else if ((type == PBC_TYPE_BLOCK) && (symbol == SYMBOL_BLK_START)) {
// This allows handling of nested blocks.
// Must do multiple times.
mult_val = int(tape[*t].arg[0]);

if (mult_val > 0) {
int t2 = *t + 1;
for (i=0; i<mult_val; i++) {
*t = t2;
if (!tape_2_string(PBC_TYPE_BLOCK, SYMBOL_BLK_END,

t, tape, s, string))
return FALSE;

}

} else {
s2 = *s;
*t += 1;
if (!tape_2_string(PBC_TYPE_BLOCK, SYMBOL_BLK_END,

t, tape, &s2, string))
return FALSE;

}

} else if ((type == PBC_TYPE_BLOCK) && (symbol == SYMBOL_PUSH)) {
// This allows handling of nested blocks.
string[*s].symbol = symbol;
*s += 1;
*t += 1;
if (!tape_2_string(PBC_TYPE_BLOCK, SYMBOL_POP,

t, tape, s, string))
return FALSE;
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} else if ((type == PBC_TYPE_BLOCK) && (symbol == SYMBOL_PUSH_EDGE)) {
// This allows handling of nested blocks.
string[*s].symbol = symbol;
*s += 1;
*t += 1;
if (!tape_2_string(PBC_TYPE_BLOCK, SYMBOL_POP_EDGE,

t, tape, s, string))
return FALSE;

} else if (type == PBC_TYPE_TERMINAL) {
// Build terminal.
string[*s].symbol = symbol;
string[*s].arg = tape[*t].arg[0];
*s += 1;
*t += 1;

} else {
printf("\nInd_lsys::tape_2_string - error processing tape: ");
printf("->(%d:%d) end=(%d:%d) @(%d:%d)\n",

type, symbol, end_type, end_symbol, *t, *s);
return FALSE;

}
}

}

int Individual :: tape_to_string(Tape *tape, LString *string)
{
int t=0, s=0;
Num_processed = 0;

if (!tape_2_string(PBC_TYPE_NONE, TAPE_END, &t, tape, &s, string)) {
// error
string[0].symbol = TAPE_END;

}

string[s].symbol = 0;
if (string[0].symbol == TAPE_END) {
s = 0;

}

model.lstring_length = s;
model.new_string = TRUE;

return s;
}
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Real Individual :: evaluate_helper(int init, int iterations, Real *argument)
{
int i, ok = TRUE;
Real val;

for (i=0; i<Num_fit_dims; i++)
model.fitness[i] = 0.0;

length = start_tape(argument, Tape1);
if (length >= MAX_STRING_LENGTH) {
ok = FALSE;

}

if (Option[9] && ok) {
length = tape_to_string(Tape1, lstring);
if (build_structure(&model)) {
evaluate_structure(&model);

} else {
;

}
}

i = 1;
while(ok) {
if (i >= iterations)
break;

i++;
length = process_tape(Tape1, Tape2);
if (length >= MAX_STRING_LENGTH) {
ok = FALSE;
break;

}
if (Option[9]) {
length = tape_to_string(Tape2, lstring);
if (build_structure(&model)) {

evaluate_structure(&model);
} else {

// ok = FALSE;
// break;

}
}

if (i >= iterations)
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break;

i++;
length = process_tape(Tape2, Tape1);
if (length >= MAX_STRING_LENGTH) {
ok = FALSE;
break;

}
if (Option[9]) {
length = tape_to_string(Tape1, lstring);
if (build_structure(&model)) {

evaluate_structure(&model);
} else {

// ok = FALSE;
// break;

}
}

}

if (ok) {
if (i%2)
length = tape_to_string(Tape1, lstring);

else
length = tape_to_string(Tape2, lstring);

if (length >= MAX_STRING_LENGTH) {
ok = FALSE;

} else {
if (build_structure(&model)) {

evaluate_structure(&model);
} else {

ok = FALSE;
}
if (model.error) {

printf("Error evaluating individual. Saving: 'last.ind'.\n");
FILE *file1 = fopen("last.ind", "w");
write(file1);
fclose(file1);
exit(-1);

}
}

}

if (!ok) {
val = 0.0;
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} else if (length >= MAX_STRING_LENGTH) {
val = 0.0;

} else
val = model.fitness[0];

if (Num_fit_dims > 7) {
set_fitness(1, model.fitness[1]);
set_fitness(2, model.fitness[2]);
set_fitness(3, model.fitness[3]);
set_fitness(4, model.fitness[4]);
set_fitness(5, model.fitness[5]);

}

return val;
}

Real Individual :: evaluate(int init)
{
int i;
Real val = 0.0, val1;
Real attr1, attr2, penalty;
Real argument[Num_arguments];

for (i=0; i<Num_fit_dims; i++)
model.fitness[i] = 0.0;

reset_used();

iterations = int(constant[0].value);
constant[0].used++;
if (iterations < 1)
iterations = 1;

for (i=0; i<Num_arguments; i++) {
argument[i] = constant[i+1].value;
constant[i+1].used++;

}

model.build_args[0] = constant[i+1].value;
model.build_args[1] = constant[i+2].value;
model.build_args[2] = constant[i+3].value;
constant[i+1].used++;
constant[i+2].used++;
constant[i+3].used++;

197



val = evaluate_helper(init, iterations, argument);

if (evaluated) {
Real val_prev;

val_prev = get_fitness();
hist_self.fitness_prev[0] = val_prev;
set_fitness((val + val_prev)/2.0);
evaluated = 2;

} else {
evaluated = 1;

}

set_fitness(val);

if (Num_fit_dims < 4)
Num_fit_dims = 4;

if (Num_fit_dims == 6) {
set_fitness(1, system_length());
set_fitness(2, length);
set_fitness(3, model.fitness[1]);
set_fitness(4, model.fitness[2]);
set_fitness(5, model.fitness[3]);

} else if (Num_fit_dims > 7) {
set_fitness(Num_fit_dims-2, system_length());
set_fitness(Num_fit_dims-1, length);

} else if (Num_fit_dims > 3) {
set_fitness(Num_fit_dims-3, system_length());
set_fitness(Num_fit_dims-2, length);
set_fitness(Num_fit_dims-1, model.fitness[1]);

}

return model.fitness[0];
}

Real Individual :: evaluate(void) {
return evaluate(FALSE);

}
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G.3 prod_body

G.4 prod_body.hh
// Symbol types.
#define PBC_TYPE_NONE 0
#define PBC_TYPE_TERMINAL 1
#define PBC_TYPE_PRODUCTION 2
#define PBC_TYPE_BLOCK 3
#define PBC_TYPE_VALUE 4
#define PBC_TYPE_CONSTANT 5
#define PBC_TYPE_VARIABLE 6
#define PBC_TYPE_FUNCTION 7

// Operators.
#define NUM_PBC_OPS 5
#define PBC_OP_NONE 0
#define PBC_OP_ADD 1
#define PBC_OP_SUB 2
#define PBC_OP_EQUAL 3
#define PBC_OP_DIV 4
#define PBC_OP_MULT 5
#define PBC_OP_POW 6

#define OP_ADD '+'
#define OP_SUB '-'
#define OP_MULT '*'
#define OP_DIV '/'
#define OP_POW '^'
#define OP_EQUAL '='

// Comparators.
#define PBC_COMP_TRUE 0
#define PBC_COMP_LESS 1

#define COMP_LESS '<'
#define COMP_GREATER '>'

// Blocks.
#define SYMBOL_PUSH '['
#define SYMBOL_POP ']'
#define SYMBOL_BLK_START '{'
#define SYMBOL_BLK_END '}'
#define SYMBOL_PUSH_EDGE '('
#define SYMBOL_POP_EDGE ')'
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typedef struct Production_Value
{
char type;
char symbol;
Real value;

} Prod_Value;

typedef struct Production_Condition
{
char comparator;
Prod_Value arg1, arg2;

} Prod_Cond;

typedef struct Production_Parameter
{
char op;
Prod_Value arg1, arg2;

} Prod_Param;

typedef struct Production_Character
{
char type;
char symbol;
int match;

Prod_Param *param;
} Prod_Char;

class Prod_Body
{
public:
/*** Variables ***/
int tested;
int used;

int empty;
Prod_Cond cond;

int length;
Prod_Char *string;

Real max[MAX_PROD_VARS];
Real min[MAX_PROD_VARS];
Prod_Head phead;
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Constant *constant; // pointer to constants in parent.
Individual *parent;

/*** Methods ***/
Prod_Body(void);
void initialize_pvalue(Prod_Value *pvalue);
void initialize_param(Prod_Param *param);
void initialize_pchar(int index);
void initialize(void);

bool is_block(int i);
bool is_block_start(int i);
bool is_mult_start(int i);
bool is_mult_end(int i);
bool is_block_end(int i);
bool is_production(int i);
bool is_terminal(int i);
int num_productions(void);

bool valid_cond(void);
bool valid(void);

void copy_symbol(int s_from, int s_to);
void move_symbol(int s_from, int s_to);
int insert_space(int s_from, int len);
int symbol_test(int index);

int delete_single_symbol(int index);
int delete_block(int index, int del_inside);
int delete_symbol(int index, int del_inside);
void delete_sequence(int l1, int l2);
void delete_string(void);

int cond_repair_pvalue(char v, Prod_Value *pval);
int make_cond_smaller_old1(void);
int make_cond_smaller(void);
int make_cond_larger(void);
int repair_cond(void);
int repair(void);
void make_random_production(int i);
void random_single_param(int i, int p, int deflt_flag);
void random_full_param(int i, int p);
void make_random_terminal(int i);
void make_random_sequence(int start, int length);
void make_random_branch(int start, int length);
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void make_random_branch_edge(int start, int length);
void make_random_mult(int start, int length);

void duplicate_pchar(int to_loc, int from_loc, Prod_Body *from_body);
void duplicate_string(Prod_Body *body);
void duplicate_cond(Prod_Body *body);
void duplicate(Prod_Body *body);
int duplicate(int len, LString *string);
void set_cond_true(void);
void set_cond_greater_zero(void);
int is_cond_true(void);
int test_cond(Real *arg);
int write_body(Real *arg, Tape *tape_dest);

void mutate_pvalue(int index, Prod_Value *pvalue);
void mutate_param_single(int index);
int mutate_param_full(int index);
int mutate_param(int index);
void reset_single_param(int index);
int mutate_symbol(int index);
int mutate_type(int index);
int mutate_character_orig(void);
int mutate_character(void);
int insert_prod_rule(int i);
int add_symbol(int i);
void make_random(void);
void make_random_condition(void);

int reorder(void);
int replicate(void);
int replicate_old1(void);
int repair_arg2(void);
int usable_cond(void);
int always_true(void);
int make_valid_cond_arg2(void);
int mutate_cond_old1(void);
int mutate_cond(void);
int mutate_old1(void);
int mutate(void);
int mutate_pheno(void);

int block_beginning(int i);
int block_ending(int i);
void pick_block(int *loc1, int *loc2);
void random_block(int *l1, int *l2);
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int block_length(int l1, int l2);
int get_loc(int start, int len);
void random_subblock(int *l1, int *l2);

int match_parens(char end_type, char end_symbol, int i);
int match_parens(void);

int recombine_blocks(Prod_Body *body);
int recombine(Prod_Body *body);

int fprint_char(FILE *file, int i);
int fprint(FILE *file);

int read(FILE *file);
int read_old(FILE *file);

};

G.5 prod_body.cc
int Max_prod_length = MAX_PROD_LENGTH;
int Prod_length = PROD_LENGTH;
int Max_string_length = MAX_STRING_LENGTH;
int Num_pbc_ops = NUM_PBC_OPS;

#define PVALUE_TYPE 1
#define PVALUE_MAX_CREATE 10
int Pvalue_type = 0;
int Pvalue_max_create = PVALUE_MAX_CREATE;

int is_term_char(char c);
int Num_args = 1;

int is_term_char(char c)
{
int i;
for (i=0; i<Num_terminals; i++)
if (c == Terminal[i])
return TRUE;

return FALSE;
}

int is_op(char c)
{
if (c == OP_ADD)
return TRUE;
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else if (c == OP_SUB)
return TRUE;

else if (c == OP_EQUAL)
return TRUE;

else if (c == COMP_GREATER)
return TRUE;

else if (c == COMP_LESS)
return TRUE;

else if (c == OP_MULT)
return TRUE;

else if (c == OP_DIV)
return TRUE;

else if (c == OP_POW)
return TRUE;

return FALSE;
}

Prod_Body :: Prod_Body(void)
{
length = 0;
used = 0;
initialize();

}

void Prod_Body :: initialize_pvalue(Prod_Value *pvalue)
{
pvalue->type = PBC_TYPE_NONE;
pvalue->symbol = 0;
pvalue->value = 0.0;

}

void Prod_Body :: initialize_param(Prod_Param *param)
{
param->op = PBC_OP_NONE;
initialize_pvalue(&(param->arg1));
initialize_pvalue(&(param->arg2));

}

void Prod_Body :: initialize_pchar(int index)
{
int i;

string[index].type = PBC_TYPE_NONE;
string[index].symbol = 0;
string[index].match = 0;
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string[index].param = (Prod_Param*)malloc(Num_args*sizeof(Prod_Param));
if (string[index].param == 0) {
printf("Prod_Body :: initialize_pchar() malloc failed.\n");
return;

}

for (i=0; i<Num_args; i++)
initialize_param(&(string[index].param[i]));

}

void Prod_Body :: initialize(void)
{
int i;

length = 0;
Num_args = Num_arguments;
if (Num_args == 0)
Num_args = 1;

string = (Prod_Char*)malloc((Prod_length+10) * sizeof(Prod_Char));
for (i=0; i<Prod_length; i++)
initialize_pchar(i);

}

bool Prod_Body :: is_block(int i)
{
if (string[i].type == PBC_TYPE_BLOCK)
return TRUE;

return FALSE;
}

bool Prod_Body :: is_block_start(int i)
{
if (string[i].type == PBC_TYPE_BLOCK) {
if ((string[i].symbol == SYMBOL_PUSH) ||

(string[i].symbol == SYMBOL_BLK_START) ||
(string[i].symbol == SYMBOL_PUSH_EDGE))

return TRUE;
}
return FALSE;

}

bool Prod_Body :: is_mult_start(int i)
{
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if (string[i].type == PBC_TYPE_BLOCK) {
if (string[i].symbol == SYMBOL_BLK_START)
return TRUE;

}
return FALSE;

}

bool Prod_Body :: is_mult_end(int i)
{
if (string[i].type == PBC_TYPE_BLOCK) {
if (string[i].symbol == SYMBOL_BLK_END)
return TRUE;

}
return FALSE;

}

bool Prod_Body :: is_block_end(int i)
{
if (string[i].type == PBC_TYPE_BLOCK) {
if ((string[i].symbol == SYMBOL_POP) ||

(string[i].symbol == SYMBOL_BLK_END) ||
(string[i].symbol == SYMBOL_POP_EDGE))

return TRUE;
}
return FALSE;

}

bool Prod_Body :: is_production(int i)
{
if (string[i].type == PBC_TYPE_PRODUCTION)
return TRUE;

return FALSE;
}

bool Prod_Body :: is_terminal(int i)
{
if (string[i].type == PBC_TYPE_TERMINAL)
return TRUE;

return FALSE;
}

int Prod_Body :: num_productions(void)
{
int i;
int num = 0;
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for (i=0; i<length; i++) {
if (is_production(i))
num++;

}
return num;

}

void copy_pvalue(Prod_Value *pv_to, Prod_Value *pv_from)
{
pv_to->type = pv_from->type;
pv_to->symbol = pv_from->symbol;
pv_to->value = pv_from->value;

}

void copy_param(Prod_Param *p_from, Prod_Param *p_to)
{
p_to->op = p_from->op;
copy_pvalue(&p_to->arg1, &p_from->arg1);
copy_pvalue(&p_to->arg2, &p_from->arg2);

}

void copy_pchar(Prod_Char *pc_from, Prod_Char *pc_to)
{
pc_to->type = pc_from->type;
pc_to->symbol = pc_from->symbol;
pc_to->match = pc_from->match;

for (int i=0; i<Num_args; i++)
copy_param(&pc_from->param[i], &pc_to->param[i]);

}

void Prod_Body :: copy_symbol(int s_from, int s_to)
{
copy_pchar(&string[s_from], &string[s_to]);

}

Real calc_prod_value(Real *arg, Constant *constant, Prod_Value *pval)
{
Real value;

if (pval->type == PBC_TYPE_NONE)
return 0.0;
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else if (pval->type == PBC_TYPE_VALUE)
value = pval->value;

else if (pval->type == PBC_TYPE_VARIABLE)
value = arg[pval->symbol];

else if (pval->type == PBC_TYPE_CONSTANT) {
value = constant[pval->symbol].value;
constant[pval->symbol].used++;

} else {
printf("calc prod value:: error, invalid arg type: %d.\n", pval->type);
while (1) ;

}
return value;

}

Real calc_prod_param(Real *arg, Constant *constant, Prod_Param *param)
{
Real val1, val2;

if (param->op == PBC_OP_NONE)
return calc_prod_value(arg, constant, &(param->arg1));

if (param->op == PBC_OP_EQUAL)
return calc_prod_value(arg, constant, &(param->arg2));

val1 = calc_prod_value(arg, constant, &(param->arg1));
val2 = calc_prod_value(arg, constant, &(param->arg2));

if (param->op == PBC_OP_ADD)
return val1 + val2;

else if (param->op == PBC_OP_SUB)
return val1 - val2;

else if (param->op == PBC_OP_MULT)
return val1 * val2;

else if (param->op == PBC_OP_DIV) {
if (absv(val2) <= 1.0) {
// Don't allow division to increase size of value.
return val1; // treat as if val2 = 1.

}
return val1 / val2;

} else if (param->op == PBC_OP_POW)
return pow(val1, val2);

return 0.0;
}
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int Prod_Body :: is_cond_true(void)
{
return (cond.comparator == PBC_COMP_TRUE);

}

int Prod_Body :: test_cond(Real *arg)
{
int i;
Real val1, val2;

tested++;
if (tested == 1) {
for (i=0; i<Num_arguments; i++) {
min[i] = arg[i];
max[i] = arg[i];

}
} else {
for (i=0; i<Num_arguments; i++) {
if (arg[i] < min[i])

min[i] = arg[i];
else if (arg[i] > max[i])

max[i] = arg[i];
}

}

if (cond.comparator == PBC_COMP_TRUE)
return TRUE;

val1 = calc_prod_value(arg, constant, &(cond.arg1));
val2 = calc_prod_value(arg, constant, &(cond.arg2));

if (cond.comparator == COMP_GREATER)
return (val1 > val2);

else if (cond.comparator == COMP_LESS)
return (val1 < val2);

return FALSE;
}

int Prod_Body :: write_body(Real *arg, Tape *tape_dest)
{
int i, j, t = 0;

used++;
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if (used == 1) {
for (i=0; i<Num_arguments; i++) {
min[i] = arg[i];
max[i] = arg[i];

}
} else {
for (i=0; i<Num_arguments; i++) {
if (arg[i] < min[i])

min[i] = arg[i];
else if (arg[i] > max[i])

max[i] = arg[i];
}

}

i=0;
while (i < length) {
tape_dest[t].type = string[i].type;
tape_dest[t].symbol = string[i].symbol;

if (is_production(i)) {
for (j=0; j<Num_arguments; j++)

tape_dest[t].arg[j] = calc_prod_param(arg, constant,
&(string[i].param[j]));

} else {
// if multiplier block start, get arg from branch end character.
if (is_block(i) && (string[i].symbol == SYMBOL_BLK_START)) {

tape_dest[t].arg[0] = calc_prod_param(arg, constant,
&(string[string[i].match].param[0]));

if (tape_dest[t].arg[0] == 0.0) {
// Empty multiplier.
if (string[i].match < i) {
printf("Prod_body :: Error with empty multiplier ");
printf("%d(%c) -> %d.\n",

i, string[i].symbol, string[i].match);
fprint(stdout);

}
i = string[i].match + 1;
continue;

}

} else
tape_dest[t].arg[0] = calc_prod_param(arg, constant,

&(string[i].param[0]));
}
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t++;
i++;

}

return t;
}

void Prod_Body :: reset_single_param(int index)
{
string[index].param[0].arg1.type = PBC_TYPE_VALUE;
string[index].param[0].arg1.value = 1.0;

}
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